
University of Durham

School of Engineering and Computer Science

(Computer Science)

Cost Factors
in Software Maintenance

John R. Foster

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

Ph.D.

1993

- 9 DEC 1993

Abstract

Cost Factors in Software Maintenance

John R. Foster

This thesis addresses the problem of accounting for both the costs and the

benefits of software maintenance in a commercial environment. It shows that

maintenance can be regarded as an investment activity, and rejects the view of

maintenance as simply a costly chore.

The objective is achieved by setting up a general model of maintenance,

whose most detailed features are the technical actions which accomplish the

task, but which also encompasses management controls and their financial con-

sequences. Parts of the model are used to develop a formal description of the

process of selecting change requests by priority and planning the timing of the

software release.

The calculations of the model are implemented as a computer program,

whose inputs are parameters describing a set of change requests and salient

project details. The program is exercised with specimen data, and planning

options and their outcomes are explored. Outcomes are expressed in terms of

timescales and returns on investment. It is concluded that such analysis is not

only desirable, but achievable in actual commercial projects.

1

Acknowledgements

I would like firstly to thank my supervisor, Malcolm Munro, for his guidance

and encouragement throughout this project. Without his support, I could not

have completed the project. I would also like to thank BT for their invaluable

support and sponsorship of the work.

The management and staff of the research library at BT Laboratories have

been tireless in their enthusiasm to help, and to them I record my deep thanks.

Many individuals have helped in ways that cannot be attributed directly by

references in the text. Some have been my managers at different stages (and

all actively supportive); some have provided their own bibliographies or insights

through discussion; and a noble few provided help with the proof-reading. They

are:

Colin Archibald, Andy Beasor, Keith Bennett, Roger Browne, Frank Calliss,

Hilary Calow, Peter Cochrane, Bill Collins, Mel Colter, Simon Cooper, Nigel

Coulter, Roy Everett, Nigel Fletton, Bob Frost, Ian Garrett, Bob Higham,

Ann Horsey, Charles Jackson, Adrian Jolly, Darius Karkaria, Rachel Kenning,

Hans Kiekuth, Ray Lamb, Bridget Leathley, Jan LeFevre, Steve Lineham, Dave

Lumby, Mark Norris, Fay Owston, Tim Pennick, Kearton Rees, Peter Rigby,

Andrew Rombach, Sinclair Stockman, Alan Stoddart, Richard Storey, Mike

Tilley, Nigel Titley, Bob Wachtel, Richard Warden, Ivan Warner, Paul Whittle,

Phil Williams and Neil Winton.

i

11

Copyright

The copyright of this thesis rests with the author. No quotation from it should

be published without his prior written consent, and information derived from it

should be acknowledged.

1

111

This work is dedicated to my wife Sheila, and my daughter Joanna.

1

iv

Contents

1 Introduction 1

1.1 Software and Software Maintenance 	 1

1.2 The Thesis Position 	 3

1.3 Thesis Overview 	 6

2 Software Maintenance 8

2.1 Introduction 	 8

2.2 Definitions 	 9

2.3 Attitudes	 	 11

2.4 Perspectives 	 12

2.5 Maintenance Statistics 	 	 19

2.6 Improving the Maintenance Process 	 20

2.7 Maintenance as Investment 	 22

2.8 Chapter Summary	 	 23

3 Software Maintenance Models 25
1

3.1 Introduction 	 25

V

3.2 Modification Cycle Models 	 26

3.3 Entity Models 	 27

3.4 Process Improvement Models 	 29

3.5 Cost/Benefit Models 	 30

3.6 Chapter Summary 	 31

4 The 7-Level Model	 32

4.1 Introduction 	 32

4.2 The 7-Level Model 	 33

4.3 The Topic Level 	 34

4.4 The Function Level 	 35

4.5 The Team Level 	 36

4.6 The Channel Level 	 39

4.7 The Network Level 	 40

4.8 The Portfolio Level 	 41

4.9 The Asset Level 	 42

4.10 Chapter Summary 	 42

5 Formal Description of Model 	 44

5.1 Introduction 	 44

5.2 Business Assumptions of Model 	 46

5.3 Numerical Assumptions of Model 	 49

5.4 Team Diagram Revisited 	 51

5.5 Flows, Delays and Queues 	 60

5.6 Incidents and Benefit Multipliers 	 61

vi

5.7 Benefits 	 66

5.8 The Definition of Priority 	 72

5.9 Release Value 	 74

5.10 Optimum Release Time 	 78

5.11 Discontinuities 	 	 79

5.12 Limitations 	 81

5.13 Chapter Summary 	 82

6 Exploring the Model	 84

6.1 Introduction 	 84

6.2 The Baseline Plan 	 85

6.3 Exploring the Baseline Plan 	 85

6.4 Alternative Plans 	 86

6.5 Stability 	 87

6.6 Risk Evaluation 	 88

6.7 Dominant Values 	 89

6.8 Chapter Summary 	 89

7 Implementation of the Model	 91

7.1 Introduction 	 91

7.2 Development Package 	 91

7.3 The Implementation 	 92

7.4 Limitations of the Implementation 	 101

7.5 Chapter Summary 	 102

vii

8 Evaluation of the Model	 103

8.1 Introduction 	 103

8.2 The Baseline Plan 	 105

8.3 More Staff Time 	 113

8.4 Review of Testing 	 115

8.5 System Replacement Plan 	 117

8.6 New Legislation 	 119

8.7 Distribution Review 	 122

8.8 Summary of Results 	 123

8.9 Chapter Summary 	 126

9 Conclusions	 127

9.1 Summary of Thesis 	 127

9.2 Results 	 128

9.3 Statement of Success 	 129

9.4 Further Work 	 130

9.5 Conclusions 	 132

Bibliography	 134

Index of Model Terms	 142

viii

Chapter 1

Introduction

1.1 Software and Software Maintenance

The design, development and subsequent maintenance of computer software are

the realm of what is generally known as the discipline of software engineering.

The accepted use of this term dates from 1968 when an historic conference was

organised in Garmisch, Germany, under the auspices of the Study Group on

Computer Science of the NATO Science Committee.

In a background note to the conference, it is recorded [Nau76, p. 5] that:

In late 1967 the Study Group recommended the holding of a

working conference on Software Engineering. The phrase "software

engineering" was deliberately chosen as being provocative, in im-

plying the need for software manufacture to be used on the types of

theoretical foundations and practical disciplines, that are traditional

in the established branches of engineering.

1

Twenty-five years on, software retains its special reputation as one of the

least disciplined of engineering subjects, despite its all-pervasive nature and

the fact that the great majority of software developments are successful and

productive. It is often pointed out, and fairly, that software engineering is a

very young discipline when compared to others; but we would also stress two

factors that have little to do with maturity:

Production Cost Ratios: The cost of an office building is almost entirely

in its raw materials and construction, with design costs relatively small.

Design errors can be enormously expensive to correct, and extra design

effort to avoid them is intuitively cost effective. With software, the actual

construction is carried out automatically by compilers, linkers etc. and the

raw materials, insofar as they can be said to exist at all, consist mainly of

storage space on magnetic or other media. Design represents almost the

entire cost, and it is much harder to resist pressures to cut corners.

Mathematical Modelling: Whether the hardware product be an office build-

ing, a bridge or an aircraft, mathematical and other modelling techniques

will be used to validate the design before construction takes place. The

inevitably approximate nature of the modelling is acceptable because the

final product is essentially continuous in its behaviour: small inaccuracies

in design or construction will lead to small deviations in performance, and

whole ranges of behaviour can be described by mathematics that is linear,
I

analogue and well understood. With software, the smallest deviation of

the product (a difference of a single bit) can easily lead to behaviour that

2

is drastically different from that expected. The mathematics that applies

here is chaos theory, and the ability to model the behaviour of the product

is severely curtailed.

After construction, both hardware and software products enter phases that

are termed "maintenance," but here again there are strong differences. The

great majority of hardware maintenance consists of the replacement of compo-

nents that have failed through stress or age; actual design changes are likely to

be few and limited in their scope. Hardware maintenance by and large attempts

to restore original functionality, with a high probability in any particular case

of success. Software maintenance, on the other hand, consists entirely of design

changes; and the extreme sensitivity of the product's behaviour to tiny differ-

ences in implementation makes such changes intrinsically more likely to fail in

unexpected and even catastrophic ways.

We do not, then, expect software engineering to evolve with time into "just"

another engineering discipline, with the same attributes and predictability as

others. It will continue to improve, but the scope for convergence is restricted.

1.2 The Thesis Position

1.2.1 Motivation for Thesis

The thesis came into being as the result of a wish on the one hand, to provide

an element of formal description to tile software maintenance process and on

the other, to show that the formal description could lead to benefit in a com-

3

mercial setting. The author's past experience as head of a team engaged in the

software maintenance of telephone switching systems played no small part in

this motivation.

1.2.2 Statement of Problem

All organisations make investments in the tools and equipment needed for them

to function, and for most companies, computer programs make up part of that

inventory.

Investments in hardware (machine tools, buildings, vehicles etc.) are costed

and accounted for under rules that are well understood. Capital investments are

shown in company accounts as asset values to which depreciation applies, and

investment decisions are based upon comparisons with the estimated earning

power of the equipment involved. Maintenance costs are generally taken into

account in these initial calculations, and regarded thereafter as relatively fixed

expenses that have already been allowed for. Future design changes are not

taken into account unless they can be clearly predicted; rather, they will be

treated as though they were fresh investments when the need arises.

Investments in software are, at the development or purchase stage, amenable

to similar calculations (although the costs are rarely reflected in company asset

sheets). The provision for maintenance, however, meets with serious difficulties.

Routine maintenance of the predictable kind is entirely absent, yet it is known

from past experience that for the average product, software maintenance will

cost as much again as development. This maintenance is the accumulation of

4

many unpredicted design changes. Often the cost may be ignored altogether in

the initial planning; if it is not, the alternative is often seen as being to assume

some overall average figure, and to enter that into the cost calculations. Either

way, when the design changes are later proposed, there is no foundation for

their cost-effectiveness to be assessed in the same manner as for hardware.

1.2.3 Statement of Contribution

The thesis proposes and demonstrates a method for the assessment of decisions

to undertake software maintenance tasks in response to change requests. The

assessment method uses financial criteria, which means that alternative invest-

ments may be considered and compared. The method derives from a formal

description of the maintenance process, and is shown to be capable of imple-

mentation for potential commercial use.

1.2.4 Criteria for Success

The thesis takes as its basic premise that decisions taken during software main-

tenance should be informed by financial criteria, so that investment in mainte-

nance can be justified not only in itself but against other potential applications

of funds.

In order to meet its aims, the thesis must:

1. Describe the maintenance process with the aid of a quantified model that
1

provides financial analysis of the consequences of proposed maintenance

actions

5

2. Show that the use of the model aids decision making both within a mainte-

nance project and in the comparison of investment values between projects

3. Show that the model can be implemented on a computer and that the

implementation has the potential of practical commercial use.

1.3 Thesis Overview

Chapter 2 begins with some general remarks on the software maintenance pro-

cess and what is known (or believed) about it. A definition of software main-

tenance is established, and common attitudes towards it are discussed. The

current state of knowledge is briefly reviewed, followed by discussion of current

research efforts.

Chapter 3 concentrates on models that have been proposed for the mainte-

nance process, showing the variety of approaches that have been adopted.

Chapter 4 gives a qualitative description of the model that has been devel-

oped for the work of the thesis. It is divided into seven levels; one (the team

level) is central to the thesis, but the existence of the others is important in

demonstrating the model's ability to span from technical detail to company

asset base.

Chapter 5 expands the model's description, but now concentrating on a

quantitative description of the team layer and the parameters associated with

it. Every parameter and derived quantity is described in this chapter, which

thus comprises the complete formal model on which the thesis is based.

6

Chapter 6 returns to a more qualitative style and describes how the calcu-

lations of the previous chapter may be manipulated in the evaluation of main-

tenance options.

The calculations are well suited to a computer program and Chapter 7 de-

scribes the implementation that has been developed, together with its limita-

tions.

Chapter 8 then brings together the formal model and its implementation,

by setting up a number of maintenance scenarios and showing how they are

evaluated. The scenarios are based on an exercise carried out on an actual

maintenance project, but the details have been somewhat disguised in the in-

terests of commercial confidence.

Finally, Chapter 9 concludes the thesis by summarising the results from

the previous chapters in the light of the criteria for success, describing the

opportunities for further research, and listing the conclusions of the thesis as a

whole.

7

Chapter 2

Software Maintenance

2.1 Introduction

Different people hold different views on what is meant by the term "software

maintenance", and a few even refuse to use the term at all. In this chapter we

will begin by examining the main competing definitions of the term, and estab-

lishing the definition that will be used during the rest of the thesis. Section 2.3

considers people's attitudes towards maintenance, both historically (including

discussion of the reluctance of many to use the term at all) and in the light

of more recent and positive changes. Section 2.4 offers some perspectives on

maintenance, citing the growth of research and the great range of project sizes.

Section 2.5 summarises present knowledge about the overall costs of software

maintenance. Section 2.6 then looks at some of the research efforts that have

led to proposed and actual improvements in maintenance operations. In Sec-

tion 2.7 we consider the motivation for research and the importance of finance

8

in it, establishing the motivation behind the work in this thesis.

2.2 Definitions

There are at least three definitions of software maintenance that are in widespread

use. Two of them are frequently used in industry, while the third is preferred

by researchers and is also the official definition according to the IEEE (The

Institute of Electrical and Electronics Engineers, Inc.)

The first and perhaps most restrictive view is that maintenance is the activity

of correcting errors in operational software [Fro85]. It is used in some areas of

data processing, where separate teams of people work on the same programs:

one team will be adding functionality to a base release, while another team

will be responding to user problem reports and building new versions of the

programs on a regular basis. The advantage is that each team is geared to

its particular timescales; a disadvantage is that changes must be implemented

twice, if the later enhanced release is to reflect user requests already granted.

The second view is also found in data processing, and is related to the

first. Instead of distinguishing maintenance activities by the reason for change

to the programs, it classifies as maintenance any change that is expected to

take less than a certain amount of effort. The actual threshold varies between

organisations, but typical values range from a few days to (less commonly) a

few weeks or even a year [F1179]. In a variant of this definition, it may also be

decreed that all corrective actions are classified automatically as maintenance

— a combination of the two views.

9

The two views may be described respectively as the technical and the eco-

nomic approaches. What they have in common is that each provides a way of

avoiding the calculation of detailed costs and benefits for individual changes:

instead, overall levels of activity are restrained by fixed budgets, and the goal

is to achieve as much as possible within those budgets.

Under either view, it is apparent that user requests which are classified

as maintenance are acted upon more quickly than those that are classified as

development. Users are not slow to react to this and may well try to turn the

distinction to their advantage, for example by disguising enhancement requests

as requests for the correction of errors [Swa79, Gre84]. A further corollary is

in planning the activities: maintenance requests are typically given much less

scrutiny than enhancement requests before they are authorised. This makes

them even more attractive to users as a means of getting changes made, but it

also reduces the emphasis on seeking cost-effectiveness in maintenance.

These reasons are enough to make the commercial definitions unattractive

from the point of view of research study, and this is given added force by the

fact that the process of making any change to operational software is for the

most part independent of the reason for that change. Tools and techniques that

benefit error correction also benefit the making of enhancements, and the risks

inherent in each activity are the same. We will therefore adopt a comprehensive

definition: that software maintenance is the set of activities involved in making

any change to operational software, for whatever reason. This is consistent with
1

the usual interpretation of the standard IEEE definition [IEE93]:

10

Software maintenance is the modification of a software product

after delivery to correct faults, to improve performance or other

attributes, or to adapt the product to a modified environment.

2.3 Attitudes

Although people's attitudes towards software maintenance are changing, it has

long been regarded as a second-class subject and has only comparatively re-

cently been seen as a respectable subject for the attention of researchers. The

widespread "quick-fix" view must take much of the blame for this; coupled

with the lack of attention to cost-effectiveness, it leads quickly to a view among

management that software maintenance is an expensive chore rather than a

productive and profitable activity.

This misperception has had several side effects. In their pioneering survey of

software maintenance [LS80], Lientz and Swanson reported that senior managers

may add to the problems of maintenance if they resist involvement in it through

their perception of the effect on their own recognition and career advancement.

That such attitudes exist is supported by other surveys as well as by direct

observation; for example, a survey in 1986 explored whether managers' attitudes

towards maintenance were favourable, neutral or unfavourable. Only 17% of the

158 respondents viewed it favourably, with 38% being neutral and the other 45%

taking an unfavourable attitude [Cha86]. One can only speculate on the effects

of this on their maintenance staff.

One result of negative attitudes has been the renaming of activities that we

11

would classify as software maintenance. A selection culled partly from the lit-

erature but mostly through conversations between the author and maintainers

and their managers is as follows: further development; production program-

ming [Can72]; current engineering; Phase 2; post deployment software support

(this one from the US military); software continuation engineering (advocated

in [Jon81] but not seen in practice by this author); post-release development;

post-design services; phased development; installed system development; soft-

ware sustaining engineering. None of these terms has seen widespread use, per-

haps because of a feeling that if any did it would attract the same reputation

and lead to a further search for synonyms.

If the above summarises the traditional attitudes towards the subject, one

can at least point to a growing positive interest as the business and economic

importance of software maintenance gains recognition. From a negligible base,

we shall see in the next section the sharp rise in the volume of published results

over the last decade or so.

2.4 Perspectives

2.4.1 Publications

The origins of the growing recognition of software maintenance may be traced

back to the decade between 1970 and 1980, in which numerous papers drew at-

tention to the fact that maintenance is a greater consumer of resource than de-

velopment. Estimates of the actual proportion of software expenditure devoted

12

• • 111

•

100

• • •
•

0
1960	 1970	 1980	 1990	 1995

Figure 2.1: Published estimates of maintenance costs

to maintenance varied between about 40% and 75%, with general agreement

that whatever the actual percentage, it was rising steadily and could be ex-

pected to continue to do so. Figure 2.1 illustrates the published estimates: each

point shows the date of publication, and the estimated percentage of software

expenditure devoted to maintenance. The references from which these figures

were taken are given in Table 2.1. As may be seen from the figure, the

1970-80 decade saw the sudden onset of such estimates, falling to a low level

after 1980 (by which time, we suggest, the message had been put across).

After about 1975, the first responses to this concern began to appear in

published papers. As a measure of the effect, a search of the INSPEC database

of publications was carried out. The two key phrases "software maintenance"

and "software development" were used, and the number of papers in each year in

13

Year
	

Source

1969
	

[Rig69]

1971	 [DSA71]

1972	 [Can72]

1973
	

[J. 73]

1973
	

[Dat731

1975
	

[Mi175]

1975
	

[Kha751

1975
	

[Bro75]

1975
	

[B075]

1976
	

[Els76]

1976
	

[Boe76]

1976
	

[Liu76]

1978
	

[LST78]

1978
	

[Ze178]

1979
	

[MW79]

1979
	

[FI179]

1980 [LS80, p. 153]

1983
	

[Gui83]

1985
	

[Boe76]

1988
	

[Mor88]

1990
	

[NP90]

Maintenance Costs

Possibly as high as 40% to 60% for most

companies who have had a computer

systems effort for a number of years

About 50% of programming expenses

About 50% of programming expenses

for most business users

About 40% of programming resources

75%
75% of DP personnel are occupied with

maintenance
Up to 40% of programming resources

40% or more of cost of development

40-60% of software costs

75% of costs

Probably about 70% of overall cost

In many organisations, at least 70% of
time of analysts and programmers

51% of time of systems and program-

ming personnel

67%

66%

38%

Often held at around 50% as a result of

deliberately freezing enhancement work

53% of software costs

(Prediction) 60% of all (hardware and

software) costs

40% of software costs

58% of software costs

Table 2.1: Published estimates of maintenance costs

14

ntenance 1286
Both 258

Mai

Development 8518

Totals

-1000

Development'

- 500

Maintenance

Both
milli11 ' 11-film 1 1 1 1	 0

1968	 1980	 1992

Figure 2.2: Published papers referring to software development, software main-

tenance or both terms. On the left are the numbers of papers by year; on the

right are the accumulated totals.

which either or both phrases appeared in the title, the index keys or the abstract

were recorded. Figure 2.2 shows the resulting graph on the left, with the totals

as a histogram on the right. Each part of the figure shows the discrepancy

between the respective levels of publishing activity, but it can at least be said

that after about 1980 the numbers of maintenance papers have been such as to

establish a firm presence in the literature.

If the decade to 1980 can be described as the decade of awareness, the decade

to 1990 can at least be described as the decade of initial response.

2.4.2 Size of The Task: Foster's Metric

Not all maintenance projects are created equal, and differences in scale and in

application can demand sUbstantial differences in approach, from the one-person

"team" to the dedicated department and from the casual to the highly formal.

15

To illustrate differences in project size, it is customary to refer to the num-

ber of lines of code that the project contains. The line count is an approximate

measure in that many different definitions are possible, but here we are inter-

ested in gross differences only and will tolerate that approximation and more. It

has another disadvantage, however, in that it does not encourage visualisation

of the quantity described. The difference between a 100,000 line project and a

1,000,000 line project is considerable, but to most people the numbers convey

little real impression of the magnitude.

In response to this latter problem, this author introduced at a conference

presentation in 1987 [FM87] an alternative expression of the line count metric,

which has become known as Foster's metric. Its formula is simple if anachro-

nistic: it is the length of line printer paper required in order to print the entire

program. The basic unit is the mile in countries that use that measure of dis-

tance, or the kilometre otherwise. Line spacing at the line printer standard of

6 lines per inch is assumed, which with a little allowance for page margins gives

conversion factors of 400,000 lines per mile, or 250,000 per kilometre.

On this basis, one tenth of a mile represents a baseline where programs are

of more or less human dimensions. In 1980, published survey results indicated

that the average application program in data processing was about 23,000 lines

of code, or 0.06 mile, and the same survey indicated that the average member

of maintenance staff was responsible for about 38,000 lines (0.1 mile). From

informal observations by the author, about twice this baseline would be the
1

extreme limit of what one person could handle alone, and such a person would

need to start with a high degree of knowledge of the system being maintained.

16

25	 Strategic Defense Initiative (estimate)

10

Miles (log scale) - Telephone switch

1 - Space Shuttle on-board flight control

- Complete works of Shakespeare

0.1 Average load per programmer
0.05 Average data processing application

Figure 2.3: Examples of program size using Foster's metric.

Systems of about this baseline size were classified by Capers Jones as medium-

sized systems [Jon77]. These system sizes and those still to be described are

shown graphically in Figure 2.3.

Some indication of the difficulty of dealing with programs larger than a

tenth of a mile is given by an example from outside the world of software. If we

measure the complete works of Shakespeare [Cra62] on a similar basis, we find

there are about 120,000 lines (0.3 miles). There are people who can justly claim

familiarity across such a large body of text, but they are few and they may be

expected to have devoted much more time to the study than is available to the

normal programmer.

Systems larger than this are correspondingly more difficult to maintain, both

because of the sheer volume of code and because their applications tend to be

somewhat exotic. If we look around the 1 mile figure, a typical example would

be the on-board flight control system for the Space Shuttle (actually about

17

500,000 lines, or 1.2 miles). Capers Jones classifies this as a "large" system,

and the fact that it is also in the life-critical class makes it essential to adopt a

very formal maintenance strategy with strong emphasis on process quality and

improvement. That its maintainers have risen to the challenge is evidenced by

the fact that the shuttle has never encountered a serious error in its flight control

software, and by the estimate [Ke192] that this is the world's only maintenance

project to have achieved the top level of 5 on the ratings scale of the SEI Model.

(It can only be an estimate since the formal SEI Model does not directly address

maintenance).

Between one and five miles is the range in which most telephone switching

systems are found. Projects of this size are classified by Capers Jones as "super-

large" — his highest category. These systems are not regarded as life-critical in

the same sense as the Space Shuttle, but their reliability requirements are typ-

ically for not more than one major failure from any cause per 40 years. Again,

it is not the size alone that makes them interesting as objects of maintenance.

If there is a practical limit to software size, it may at present lie at and above

about 20 miles (8,000,000 lines). Inventories of programs can and do exceed

this figure, but these are aggregations and not single systems. The possibility

of achievement of this sort of size was publicly debated in 1983, when the now-

cancelled Strategic Defense Initiative project was first mooted. The original

estimate was for 10,000,000 lines (25 miles) of control software [F1e83].

18

2.5 Maintenance Statistics

Figure 2.1 showed the wide range of estimates of how much of software expen-

diture goes on maintenance, and until recently the accepted consensus has been

one of high and rising costs. As an absolute amount of money, maintenance

costs are indeed high; but the evidence supports neither the assumption that it

accounts for the great majority of software costs, nor the assumption that the

proportion is rising over time.

In a paper by the author in 1991, these assumptions were examined and

rejected, at least for data processing applications [Fos91]. The paper argues

that maintenance represents a constant percentage of software costs, at between

50 and 55%, and suggests that managers achieve the constancy by controlling

the rate at which old programs are phased out and replaced by newly developed

ones. An implication of this is that cost-effectiveness may not yet be a widely

applied factor in such decisions.

The paper goes on to suggest that, if program lifetime is indeed being con-

trolled to keep maintenance costs a constant proportion of expenditure, then

overall improvements in the maintenance process will be measured by exten-

sions in average program life and not by changes in overall expenditure. This is

unfortunate, because program lifetime has been little studied [Ken90]. The gen-

eral surveys that have been carried out have generally been patterned on [LS80],

which contained no representative questions on the age of the software portfo-

lio. (Program age did figure in part 2 of their questionnaire, but only to record

the age of a sample application which was itself not randomly chosen). How-

19

ever, more recent work in Japan shows that the issue is now beginning to be

addressed [TT92].

2.6 Improving the Maintenance Process

There have been numerous attempts over the years to "tackle the maintenance

problem" with a variety of weapons, which can be classified broadly into two

main types: improvements to the development process in the hope that better

designed programs will require less maintenance; and direct attempts to improve

the maintenance process itself. Early developments in high level languages and

in the adoption of the structured programming discipline are these days taken

for granted as better practices than their predecessors, and there have been

many attempts to capitalise further by expanding the ideas.

So-called fourth generation languages (4GLs) have been one such attempt.

The name covers a variety of development tools (being more a marketing than

a scientific term), but it is generally applied to application generators that help

designers to solve problems within more or less restricted domains. The expec-

tation was that by promoting extremely rapid development times, maintenance

would all but cease to exist, being replaced by further redevelopment as soon

as change was required. That initial promise is now seen as somewhat flawed,

though the reasons are not purely technical. 4GLs are by their nature designed

for fairly specific application domains, which means that a wide variety of them

have been produced. The process of standardisation, so much a feature 'of the

more successful third generation languages, was notable by its absence, and with

20

reduced market share for each offering the tendency was for each 4GL to remain

the property of its sole manufacturer. Users who were perfectly happy with the

performance of their chosen 4GLs now find themselves vulnerable to their sup-

pliers being taken over or otherwise going out of business; and if that does not

happen, they then find themselves locked into using whatever range of machines

their 4GL supplier decides to support. Not a few former 4GL converts are now

in the process of migrating their software back to COBOL (e.g. [McD92]).

Formal methods have long been regarded as a great future hope for software,

with their promise of rigorous mathematical proofs of correctness of programs.

Claims have been made that programs that have been proven correct will re-

quire no maintenance; but these claims fail to take into account that corrective

maintenance accounts anyway for only a minority of the effort. Formal meth-

ods have not yet advanced to the stage where they can be used on large-scale

projects, and there has been little study of how incremental change will later

be imposed on the mathematical proof structures.

Particularly in recent years, object-oriented programming has achieved con-

siderable acceptance in software development, and the flexibility of its attributes

such as inheritance and dynamic binding have been promoted as being auto-

matically better for maintainers too. These claims have been regarded by many

as self-evident; yet studies have called the benefits into question, since by their

nature they can put program analysis and comprehension beyond the range of

present-day tools and methods [WH91, LMR91].
,

Of direct assaults on the maintenance process, great efforts (and progress)

have been made in the areas of reverse engineering and re-engineering [CC90].

21

Reverse engineering is the first stage of re-engineering, and it refers to the pro-

cess of analysis of the source code in order to (re)discover underlying structures

and promote understanding of the operation of the existing code. Gaining such

understanding has been reported to take large amounts of programmer time: a

survey of 800 programmers by the Mellon Bank found that they spent 29% of

their time simply studying the documentation and code [Ti187]. Other such es-

timates have been 50-90% of maintenance time [Sta84], and 30-60% [DBSB91].

The broader process of re-engineering starts with code analysis, but has the

further goal of using the discovered structure as a base for reconstruction of

the program, such that the structure is more cleanly reflected for the benefit of

subsequent maintenance operations. The state of the art in both these subjects

is well reflected in [vZ93].

2.7 Maintenance as Investment

Running through many of the published papers on software maintenance is a

familiar litany. It runs something like: "Software maintenance is little under-

stood, yet large amounts of money are spent upon it. Any new understanding

must be good, and within such large expenditure even small technical advances

must be worth many times their cost."

This is admittedly something of a caricature, yet a maintenance manager

contemplating investment in a new maintenance tool, or in training costs for

a new method, is likely to have' little more available by way of justification.

The problem here is that justifying expenditure on software within the normal

22

business is itself a little understood process. It is conventional to appraise

investments according to their costs and expected future income, but the future

income of a program which supports a business without directly generating

revenue is difficult to calculate and currently the subject of research [C1e91,

WDK93].

For managers in other fields, the ideal way to justify expenditure is to put

forward an assessment of the financial implications of a proposed change in an

activity. The calculation will include both costs and benefits, and will compare

the net benefit with the costs involved. The result will be expressed in terms of

a return on investment, which will also enable competing demands on available

money to be ranked against each other. (Should we buy this new maintenance

tool, or should we spend the money on additional advertising instead?) We

suggest that software maintenance is more amenable to this kind of calculation

than is software development, and the model put forward in the thesis will make

its calculations on that basis.

2.8 Chapter Summary

Software maintenance is the process of making incremental changes to a soft-

ware product in order to retain and enhance its value in the light of changing

demand. Historically, it has suffered from negative attitudes towards it. How-

ever, recent years have seen changes in those attitudes and not the least of the

effects has been a rapid rise in the number of research publications related to

it. Maintenance accounts for just over 50% of all software expenditure, which

23

1

realisation has no doubt acted as a stimulus in that direction.

The difficulties of maintenance are not the same for all projects, as can be

seen from a comparison of project sizes. The great majority of programs are

relatively small, but extremely large ones do exist and these tend to have critical

reliability requirements by the nature of their application.

The expense of software maintenance in an organisation can be considerable,

yet maintenance actions are not subjected to the same investment analysis as

decisions in other areas (including software development). Maintenance projects

are typically controlled via fixed budgets, and the calculation of return on in-

vestment does not take place.

24

Chapter 3

Software Maintenance Models

3.1 Introduction

This chapter examines various models that have been put forward to explain

and support the maintenance process. The classification takes an evolutionary

view, beginning with the earliest models and progressing to the more recent

(and broader) offerings.

In Section 3.2 we review a type of model that has been put forward from the

early 1970s. It concentrates on the so-called modification cycle, which represents

the sequence of actions taken by maintainers as they work through from change

request to new release. Many variations exist, but at heart the models are

prescriptive sequences of operations to be performed.

These models largely held sway until the mid-80s, when an expansion of

viewpoints is apparent. The modification cycle is still central: but now there is

new emphasis on other entities in the process such as types of knowledge and

25

forms of documentation appropriate at each stage. Section 3.3 considers these

developments.

The above models all concentrate on maintenance as practised by main-

tainers. The next set to be presented broadens the perspective by considering

maintenance as a continuously managed process, thus introducing the manage-

ment aspects. The modification cycle is still understood to comprise the basic

set of activities being managed, but the new generation of continuous process

models looks for common elements across longer time periods, with emphasis

on measurements of activity and effectiveness. These models are discussed in

Section 3.4, and include models which take into account externally imposed

constraints such as the SEI model of software maturity.

Along with the evolution of models has come a gradually increasing aware-

ness of the importance of costs and benefit measurement, alongside the techni-

cal aspects of maintenance. Section 3.5 considers possible future developments

along that path, and some of the obstacles to their creation.

3.2 Modification Cycle Models

These models present the maintenance process from the viewpoint of the indi-

vidual maintenance programmer. They describe the sequence of actions taken

in response to a change request, the sequence being known as the modifica-

tion cycle [EM82]. The main models of this type up to 1983 are summarised

in [CB86].

An early example is given in [Liu76]. Just three steps are enumerated:

26

understanding the problem; designing new program logic; and incorporating

the revised logic into the program. Testing is treated as an activity external to

the model, though of no less importance for that.

Later models extend the modification cycle to include the testing phase, and

expand to varying degrees the number of stages. Many also include at the start

a stage of problem analysis: thus in [Sha77] we have: problem verification; prob-

lem diagnosis; reprogramming (including rebuild); and baseline verification and

validation. Similarly in [McC81] the four stages are: program understanding;

identification of objective and approach for the modification (including detailed

design); implementation; and revalidation. The second and the last of these

stages are then broken down into respectively four and five sub-stages.

These and other modification cycle models differ in detail and in exactly

where they consider the modification cycle to start and stop, yet their sim-

ilarities are stronger than their differences. All ha.ve in. common their view

of maintenance as a sequence of stages, with only incidental reference to the

objects being maintained and the information required for the process.

3.3 Entity Models

The summary of modification cycle models referred to above [CB86] was in-

tended as more than a simple review. It used the commonalities between the

models to derive a complementary list of the items of information required by

the maintainers. These included information on the original requirements and

specification, the architectural and low-level design and so on. These, along

27

with the source code, are the entities manipulated by the maintenance process.

Later models take this idea and expand on it, and in [HQ92] there appears a

process description which starts with a modification cycle but goes on to define

actors and their tasks, and documents and their information flows. Actors

include review boards as well as maintenance team members; documents are

such as the software problem report and software change proposal.

There is even more expansion in [CC92]. This paper, which along with [CB86]

has Collofello as a co-author, presents maintenance as a sequence of tasks

(stages), which manipulate entities (documents) in accordance with pieces of

knowledge (of the information in documents; of other information for which

there may be no formal record; and of how to perform tasks). Their model

contains 17 tasks, 13 document entities and 29 knowledge items.

The IEEE Computer Society have for some years been studying the various

models available, with a view to issuing a standard in the area. That has

now been done, and IEEE Std 1219-1993 contains a seven-stage modification

cycle augmented with the relevant document entities. The description of each

stage includes the list of documents required, the detailed processing steps, the

control actions (effectively a checklist to ensure correct processing), and the list

of documents modified and generated. The stages begin with examination of

the change request, and end with delivery and installation.

28

3.4 Process Improvement Models

The models so far described concentrate on how to perform maintenance. A

more recent type of model takes a wider and more abstract view, seeking to

identify the opportunities for improvement in the way the process is carried

out.

Boehm's Spiral Model [Boe86, Boe88] is an early example of this abstraction

process. It emphasises the setting of objectives and the evaluation of risks, and

generally views maintenance more from the viewpoint of the manager than the

maintainer.

Process improvement implies process measurement, and one such measure-

ment system is described in [RU89]. The paper gives a model of a NASA

maintenance process, and describes how a goal oriented approach was used to

define a measurement programme, whose aim in turn was to identify parts of

the process that were candidates for improvement.

The general theme of process quality came into prominence with the work of

the Software Engineering Institute (SEI) in establishing guidelines for the evalu-

ation of quality in software suppliers [11um89]. The result of this work is the SEI

Model, which defines five levels of process quality and contains questionnaires

for carrying out the assessment process itself.

Despite its influence generally, the SEI model directly addresses only soft-

ware development. This is, from the maintainer's point of view, a deficiency to

be rectified. Work at the University of Durham in the UK has led to the devel-

opment of a specific model for maintenance process improvement, in which the

29

steps of analysis, design of measurement, and modification of the process are de-

scribed [I11392]. Simultaneously, the SEI Model itself is being reviewed by some

of its users, who are proposing extensions for the assessment of maintenance

operations [Dre92].

3.5 Cost/Benefit Models

Most maintenance managers would suggest that the costs of the software main-

tenance process are only too apparent, and to their managers in turn a primary

objective is likely to be cost reduction.

Modification cycle models and entity models lend themselves to cost reduc-

tion exercises, because in breaking down the maintenance process into smaller

stages they allow cost measurements to reveal the most expensive or resource-

hungry tasks. These then become candidates for closer inspection.

The drawback of this approach, however, is precisely in its focus on costs

alone. There is clear advantage in streamlining a task if the delivered quality

of the product can be preserved, but it is impossible to identify those process

changes which might actually increase maintenance costs while still delivering

a higher net value in the end.

The previously cited method in [CC921 is for the most part cost-based in this

manner, but it introduces a benefit-based element in suggesting that a causal

analysis of errors could reveal those tasks whose improvement might yield a

high return on inves
1
tment. The suggestion is not expanded upon, and there is

no indication as to how the return on investment might be calculated.

30

In a true cost/benefit model as we would define it, the net benefits of main-

tenance operations would be measured (or predicted) as the effects on the or-

ganisation's profits as a result of the changes and expressed in monetary units

or more generally as a return on investment. One such model is the subject of

this thesis.

3.6 Chapter Summary

Early models of the software maintenance process concentrated on the sequence

of steps followed by the maintenance programmer. Model development has since

expanded on this view, though many still retain the sequence as a component.

Process improvement models seek to evaluate the overall quality of the pro-

cess and thereby identify areas for attention and change. They attempt quan-

tification, but financial control is not necessarily a strong feature.

Cost/benefit models, such as the one presented in this thesis, are not yet

prominent. They seek to establish the financial consequences of maintenance

actions and plans, in terms of overall profit to the organisation. Benefit analysis

has been established as a little-understood subject in the development world,

but for maintenance the problem may be more tractable.

1

31

Chapter 4

The 7-Level Model

4.1 Introduction

This chapter introduces the author's 7-level model of software maintenance. The

purpose of the model is to span a wider range than previously existing models,

by considering technical actions and entities at its lower levels and investment

factors at the higher ones.

Section 4.2 explains the broad outline of the model and introduces the seven

levels. Sections 4.3 to 4.9 then describe the individual levels in more detail.

Section 4.5 gives the overall operation of a maintenance team. It goes into

greater detail than the other sections, as this level is used extensively in the

later chapters.

Overall, the 7-level model contains more detail than is strictly needed for the

thesis. Many of the levels are therefore described only briefly, but the intention

is to show that the model would provide a suitable framework for extensions to

32

the present work.

4.2 The 7-Level Model

The subject of software maintenance is large and complex. As with any such

subject, it is useful to have a simplified model, to act as a focus for discussion.

Without such a model:

• there is no standard framework of discourse within which different re-

searchers and maintenance teams can discuss matters of common interest

• there is no standardisation of concepts, and time is wasted establishing

and re-establishing exactly what is meant

• it is difficult to compare different organisations whose approaches may on

the surface seem radically different

• it is difficult to isolate individual topics for discussion, since the boundaries

are not clearly drawn.

Such a model is of most help if real maintenance organisations can be seen to

map onto it, and should not be judged by the proportion of startlingly new

ideas it presents. This model has been produced with that in mind. It may be

seen as an extension of the existing models presented in Chapter 3.

The 7-level model breaks the subject area into levels in broad accordance

with managerial levels in an organisation. The lowest levels are the most de-

tailed; the higher ones take increasingly broad views of the process until at the

33

very highest, the software being maintained is seen as just one component of a

company's asset base.

The levels of the model will first be listed from the highest down, then

described from the bottom up. The list is:

Asset Level: software as a company asset

Portfolio Level: the set of software items owned and used by the company

Network Level: a subset of the portfolio (see detailed description)

Channel Level: the support chain for one software product

Team Level: a maintenance team

Function Level: a function performed within the team (e.g. request evalua-

tion)

Topic Level: a component of a function (e.g. benefit assessment)

4.3 The Topic Level

Topics are the most detailed elements of the model. At the topic level, individual

actions performed by members of the maintenance team are considered. Issues

include:

. Allocation of time between tasks

• Reverse engineering techniques

34

• Methods and tools to support tasks

The individual steps of the modification cycle models presented in Chapter 3

would in the 7-level model be considered as topics.

4.4 The Function Level

Functions may be considered as groupings of topics, and the following list of

functions is representative:

• Report Interface: the process by which customers of the maintenance team

(who may be end consumers or other support teams) make their queries

and problems known to the team

• Front Desk: the duty within the team of receiving, classifying and re-

sponding to reports

• Request Store Management: dealing with the backlog of change requests

that must be scheduled for action (as opposed to having instant answers

available)

• Escalation Procedure: passing on to other teams those reports that cannot

be dealt with locally

• Change Design: converting a report into a proposed change

• Change Store Management: monitoring the set of designed changes that

have yet to be delivered as a new build of the system

35

Front
Desk

Request
Store

Repository

Delivery
Desk

Change
Store

Figure 4.1: Maintenance Team Diagram

• System Build: entering the changes, and rebuilding and retesting the

system

• Repository Management: dealing with the set of known solutions to prob-

lems, which includes new releases of the system as they become available

• Release Process: delivering new versions of the system

4.5 The Team Level

The team level, as its name implies, considers the work of a single maintenance

team. It brings together the functions and topics for that team, and shows how

they relate and interact.

Figure 4.1 shows the diagram that summarises the actions of the team. In

the figure, the large rectangle represents the organisational boundary between

36

the team and its customers. What lies inside this boundary is directly under

the control of the team; what lies outside it is not.

Outside the rectangle and to the left are the customers of the team. From

them are received queries, problem reports and change requests.

Within the team, these communications are received by the Front Desk

duty, which retains records of them. It is the responsibility of the Front Desk

to provide answers/solutions, either directly or by passing on the request to a

more specialised duty within the team.

The Front Desk has access to a set of known answers/solutions, which is

represented in the model as the Repository. This represents information in a

variety of forms: versions and variants of the software product(s), paper records

of answers to frequently asked questions, etc. Knowledge that resides only in

the heads of those performing the Front Desk duty is also regarded as being in

this store.

If the solution is in the store or can quickly be generated from information

that is, then it is immediately to hand and can be issued back to the customer

without further delay. The arrow from the Front Desk to the Delivery Desk

and thence out to the customer shows this flow.

Otherwise, a new solution must be generated. We have just accounted for

the cases where this can be done quickly, so we now assume that the request

must be queued until effort becomes available.

This queue is represented as the Request Store, which contains the backlog

of unactioned requests. Customers would like this store to be empty at all times,

but economics and staff availability usually dictate otherwise.

37

The management of the Request Store is an important function. Priorities

must be assigned among its contents, and preliminary investigations and impact

analysis performed in order to plan future work. The world changes and moves

on, so these assessments must be revisited from time to time to keep them

current [Fos89].

These preliminary investigations may reveal that the team does not itself

have the resources or capability to provide the answer to the problem. For in-

stance, a fault may actually lie in a software module provided (and maintained)

by some other team or company. In this and other such cases, a request must

be made to that team or company for a solution to be provided, and this team

will then be the customer as far as they are concerned. On the diagram, such

further teams lie to the right of the boundary rectangle.

If the team can deal with the request, however, then it will be dealt with as

one of a repeated series of actions in which the highest priority request is taken

from the store and (usually) a software change designed.

The holding store for these changes is the Change Store, into which solu-

tions received from other teams are also placed.

From time to time, the decision will be taken to build a new release of the

software, incorporating all new changes available. (There are exceptions to that

"all": emergency action may require just a single vital change to skip past the

rest).

New releases are then lodged in the Repository, from which they are available

for distribution to the original customers.

38

User
Support

Module A
Support

Technical
Support

Module B
Support

Figure 4.2: A Maintenance Channel

4.6 The Channel Level

The team model of figure 4.1 works well at that level, but it is rare for the whole

support of a product to be carried out within a single team.

Where more than one team is involved, there will typically be a front-line

user support team, which may call on a technical system support team, which

may in turn call on separate teams for the different components (modules) of

the product as a whole.

This situation is modelled by representing each team as a box after figure 4.1,

and showing the boxes joined to indicate the chain of customer/supplier rela-

tionships that then exists.

The result is a maintenance channel diagram as shown in Figure 4.2.

Each of the team and channel diagrams is essentially a flow diagram for

requests and their solutions, but the channel diagram takes the higher level view.

(In a real situation, the channel diagram will typically be more complicated than

39

this example shows).

At the channel level, we are concerned with studies of the overall response

to requests. For example, user satisfaction with product maintenance is greatly

affected by response time between original request and installed solution. The

channel of teams must itself be studied, as well as the response times of the

individual teams. Communications between teams are also studied at this level:

requests from one team do not reach the next instantaneously. If the boundary

between two teams is also a boundary between two companies, contractual

negotiations may increase the delays. Users are concerned only with overall

responses, but the channel management must be aware of the details of the

channel performance if they are to concentrate efforts where they will do most

good.

4.7 The Network Level

Most maintenance teams have responsibility for several products, and the com-

peting demands of these products on the team's resources cause interactions

between the products.

The network level of the model is concerned with these interactions, and its

basis is an augmented version of the channel diagram.

In this augmented version, separate channel diagrams are drawn for each

product supported by the team, and these are then overlaid to show the broader

network which is the set of teams and customers with which this team will

interact and whose operations it will affect. The flow and queueing metrics

40

are then applied to the network, and bottlenecks are identified. As a result,

channels may be reorganised and/or resources redistributed between teams.

Another version of the network level considers all products used by a par-

ticular customer or group of customers, and draws the augmented network of

teams as it affects the customer. This permits the evenness of support across

the product range to be examined and if necessary optimised.

4.8 The Portfolio Level

At this level, the concern is with the sets of products that support particular

business functions of the company. It is valuable to assess and compare:

• the extent to which each business function is supported by software prod-

ucts

• any opportunities for extra products, or enhancements to existing ones

• the software investments and paybacks for the individual products

The benefit of this exercise (which is known as Portfolio Management and can

be obtained as a commercial service) is that the evenness of support across

business functions can be assessed and compared, and effort directed to where

it will best serve the company as a whole.

41

4.9 The Asset Level

This is the highest level of the model. It considers the entire set of software

products owned by the company, and is concerned with the total value of this

investment and the overall costs and paybacks associated with it.

The benefit is that software can then be assessed in terms of its importance to

the business as a whole, and ranked accordingly for strategic planning purposes.

These include research and development allocations, as well as broad budget

decisions.

A question which occurs here, is whether (and if so how) software assets

should be represented on the books of the company, alongside its buildings and

other visible assets. Some companies have indeed done this, but for most the

immediate question is how to derive the appropriate figures rather than what

the accountants should do with them next.

4.10 Chapter Summary

A comprehensive model of software maintenance has been presented, in which

seven levels of description combine to link the most detailed actions with their

financial consequences in terms of investment.

The most important level as far as this thesis is concerned is the team level,

which encapsulates the local concerns of a single maintenance team. At this

level can be seen the flows of change requests from submission to resolution.

Measurements of flow, queue lengths and delays are possible at this level, and

42

can be related to the team level diagram.

1

43

Chapter 5

Formal Description of Model

5.1 Introduction

The model that lies at the centre of this thesis is presented in detail in this

chapter. It is a part of the previously sketched 7-level model, selecting those

attributes and functions that are of concern to an individual maintenance team

and its immediate management.

The model must, if it is to be successful, assist the maintenance manager who

has control of the rest of the team and its own operations, but who must direct

those operations in response to outside pressures over which the team can exert

little or no control. A related problem faced by the team is that of imperfect

information: customers and suppliers are rarely willing to impart all information

that could be helpful (usually for commercial rather than technical reasons) and

the model must either avoid requiring information which in practice would not

be available or have an explicit mechanism for dealing with uncertainty.

44

The description will first outline the business and numerical assumptions

that underlie the model, and which are in effect the criteria that it must meet.

The team diagram is then reintroduced in Section 5.4, and the model's com-

ponents are derived from it. It is shown that the form and use of the team

diagram viewpoint permit the collection of metrics that are of value to both the

customer and the team itself, and differences between the customer and team

viewpoints of these metrics are discussed.

The descriptions of the model's parameters and calculations then form the

bulk of the chapter. Each quantity is defined as either a description or an

equation; where an equation is not possible, an indication of the algorithm that

performs the calculation is given.

The calculation as a whole is necessarily iterative in nature, and the math-

ematics of continuous behaviour cannot be applied. Section 5.11 discusses the

consequences.

Section 5.12 sets out the limitations of the model which might have to be

addressed in any practical implementation.

5.1.1 Conventions

The model to be presented in this chapter takes various input parameters and

performs calculations on them to generate intermediate and output results.

These quantities are given by definition, calculation and/or equation (as ap-

propriate) in the text, and definitions, calculations and equations share the

same numbering scheme.

45

For convenience, two tables are provided in which all the parameters and

results are listed, together with their symbols and the references of their defini-

tions or the equations in which they are defined. Table 5.1 lists the parameters,

and Table 5.2 lists the intermediate and output results.

Each of the quantities used in the model has both a symbolic and a textual

representation. Textual representations appear in italic type to stress their

special meaning, in this and subsequent chapters. There is at the end of the

thesis an index of the terms used, so that the uses of each may be seen. Index

entries are triggered either by the use of the textual representation or by the

appearance of the symbol for the quantity concerned.

5.2 Business Assumptions of Model

Since it is a requirement (Section 1.2.4) that the model be realistic in accepting

basic facts of commercial life, it is necessary first to document the necessary

assumptions about those basic facts. There are three:

1. The ultimate driving force behind decisions is money. In general, anything

a business does translates (or should) eventually into profit, and it is the

pursuit of maximum profit for minimal expenditure that keeps a business

solvent.

Stated in such bald terms, this could be the classic description of any get-

rich-quick, cowboy operation. But profit is a complex, long-term quantity.

Companies which are to be successful in the long term need to spend

money on maintaining their reputation, which may include the finance of

46

Parameter Symbol Defined

acceptance cost CA 5.31	 p. 77

acceptance time TA 5.15	 p. 65

base build cost CB 5.6	 p. 59

base build time TB 5.7	 p. 59

change delay Tc 5.29	 p. 76

change effort Eu 5.1	 p. 54

distribution rate U 5.17	 p. 65

external change cost Cx 5.2	 p. 54

frequency base H 5.23	 p. 71

incident frequency R 5.22	 p. 70

incident value S 5.20	 p. 68

initial installations iinit 5.10	 p. 64

new installations NI 5.11	 p. 64

retired installations RI 5.12	 p. 64

staff F 5.5	 p. 57

staff cost Cs 5.3	 p. 54

time max T,„,„, 5.9	 p. 63

time now Tn.,,, 5.8	 p. 63

unit upgrade cost Cu 5.32	 p. 78

Table 5.1: Parameters of the model

47

Result Symbol Defined

available change effort E 5.28	 p. 76

change list CL 5.30	 P. 76

distribution cost CD 5.33	 p. 78

distribution start time TD 5.16	 p. 65

frequency base count Q 5.21	 p. 70

frequency multiplier G 5.24	 p. 71

gross change benefit BG 5.25	 p. 71

incident type count J 5.19	 p. 68

installations I 5.13	 p. 64

net change benefit BN 5.26	 p. 71

optimum release time Lpt 5.37	 p. 79

priority P 5.27	 p. 73

release benefit BR 5.36	 p. 78

release completion time TDONE 5.18	 p. 65

release cost CR 5.34	 p. 78

release time TR 5.14	 p. 64

release value V 5.35	 p. 78

total change cost CT 5.4	 p. 55

Table 5.2: Intermediate and output results of the model
1

48

activities that in themselves make no profit at all; nevertheless, in the long

term view, profit is still the underlying motive.

2. There are exceptions to the first assumption! Certain actions are driven

by legal or safety requirements, and a company wishing to stay in business

at all must take those actions. While it would be possible in theory to

assign penalties as negative profit and weigh the risk of breaking the law,

it is an unwise company that does so. There is explicit provision in the

model for the treatment of these mandatory issues when they arise as

software change requirements.

3. In an imperfect world, assumptions replace actual data but are best doc-

umented so that the impact of new knowledge can later be assessed. The

model will support this by allowing actual data to be used where avail-

able, but accepting all inputs as parameters that can be documented, and

changed later as may be necessary. In the special case of assumed ben-

efits, figures are accepted in a form which as far as possible isolates the

effects of individual assumptions from one another and makes changes as

painless as possible.

5.3 Numerical Assumptions of Model

In addition to the recognition of commercial aspects, the model is required to

provide quantified predictions for use in decision making. It must therefore deal

in numbers and measurements, and have a coherent structure so that different

49

quantities are related and can take part in calculations. Specifically:

1. The model will deal with a form of token as a fundamental unit. This

token is created by a customer (i.e. outside the team) as a change request,

and ultimately returned to the customer as a solution to the request or

in response to a decision by the customer to withdraw the request. The

return may, however, be delayed for an arbitrary length of time if the

request finds itself placed at the bottom of a long priority list. Thus:

within the team, tokens are neither created nor destroyed, though they

may be stored.

2. Tokens will have various attributes, expressed as data attached to them.

These attributes will include intrinsic worth (benefit of supplying a solu-

tion), and history information such as times of transit through the various

phases of the model, and associated costs. For reference, Table 5.3 lists

these attributes.

3. Phases of the model may also have data associated with them, such as the

average time to design a change.

4. It must be possible to extract summary data, such as overall costs of

the team's operation, from the individual data for passing on to higher

management.

5. The model must be able to use detailed data from lower layers of the
1

7-layer model. If for example a new reverse engineering tool is under

evaluation, it should be possible to feed in the estimated gain in efficiency

50

Attribute Symbol Attribute Symbol

change de/ay

change effort

customer charge

description

event times

external change cost

frequency base

frequency multiplier

gross change benefit

Tc

Ec

Cx

H

G

BG

historic cost

identity

importance

incident frequency

incident type

net change benefit

priority

total change cost

R

BN

P

CT

Table 5.3: List of Token Attributes

on one part of the process and predict the future effect on the entire

operation.

5.4 Team Diagram Revisited

Figure 5.1 repeats the team diagram, drawn according to convention with cus-

tomer(s) on the left and supplier(s) on the right. A general description of its

operation has been given in Chapter 4. We will now concentrate on the quan-

tifiable aspects of its use.

Incoming tokens arrive via (1). Each has attributes of identity (a unique

'reference for the token); description (text associated with the token which will

at least include the customer's description of the problem); and importance (an

51

(3)(1) Front Request
Desk Store

Repository

(2) Delivery Change
Desk Store

Figure 5.1: The Team Diagram

attribute which the team would like to quantify, but which will be delivered

in a form decided by the customer alone). The importance represents the cus-

tomer's initial view of the priority of this token, and is distinguished from the

subsequently calculated priority, which takes into account both benefits and

costs.

There is also considered to be a historic cost attribute (see below), which at

the time of receipt is zero.

The token's description attribute is qualitative rather than quantitative. It

is assumed that it will be augmented by the team to record actions, opinions

and results as the token is processed; but it is not required or used by the model,

which deals only with quantified data. The description attribute will therefore

be ignored for the rest of this formal discussion.

The historic cost attribute, in contrast, is wholly quantitative. As the token

is further processed, the costs of so doing will be added to the attribute, which

52

may be kept either as a simple running total or in the manner of an itemised

bill. In further descriptions, this accumulation of value will generally be taken

for granted. The historic cost is money that has already been spent, and as

such it takes no part in future projections and plans.

A further attribute is known as the event times attribute. Whenever a token

passes from one functional area of the team diagram to another, the time of the

transition is recorded in this attribute (which therefore has the form of a list of

entries). Later, metrics information may be extracted from this list.

Tokens are received by the Front Desk, and there marked with the time

of receipt in the event times attribute. Access to the Repository will show

whether a solution is immediately available; this will happen if the token is a

simple request for information, or if the solution is to provide a more recent

release of the software which is already available. In this case, the token passes

directly from the Front Desk to the Delivery Desk, and delivery takes place.

At delivery, the token is returned to the customer via (2), and its attributes,

augmented with the time of delivery, are recorded in the Repository.

No Immediate Solution If no immediate solution was available, the token

must next pass from the Front Desk to the Request Store, where it will await

attention. At this point, it gains the further attribute of priority, which relates

to but is distinct from the importance that was originally present. The priority

attribute will be developed further in Section 5.8, but for now it is sufficient

to observe that priority will be a scalar quantity which primarily expresses the

team's view of the cost-effectiveness of delivering any particular token in the

53

queue. It will also have a secondary function that if a token's priority lies below

a given threshold level, the further processing will have been deemed to cost

more than it is worth, so unless events cause the priority to be revised upwards,

such tokens should never leave the queue unless withdrawn by the customer.

There will also be cases in which the calculation of priority becomes irrele-

vant, because a change is mandated by legislation or other over-riding force. In

such cases, there is a mechanism to bypass the normal mechanism and assign

an effectively infinite priority to a change. (See Section 5.8.2).

Although priority is a scalar quantity, it is not directly an input to the model

but instead the result of a calculation involving costs and benefits. The costs

are the estimated costs and delays of completing the design of the change, and

are expressed as the change effort and the external change cost.

Definition 5.1 The change effort, denoted by Ea, is the estimated future effort

that must be expended by the team in order to bring the token into the Change

Store.

Definition 5.2 The external change cost, denoted by C1 , is the estimated fu-

ture direct expenditure that is required in order to bring the token into the Change

Store. The external change cost does not include the cost of the change effort.

These components express the expected costs of getting the design as far as the

Change Store. We will next introduce two terms which will allow groupings of

the components, for which we will need first to define staff cost.

Definition 5.3 The staff cost, denoted by C5,, is the amount of expenditure

associated with one unit of staff effort. It is expected that the actual figure

54

will be derived in accordance with normal company standards — usually as a

combination of direct salary costs plus assigned overheads.

Definition 5.4 The total change cost, denoted by CT, is the total future expen-

diture associated with carrying out the change to which it refers. It is the sum of

the costs of effort and external expenditure, as given in the following equation.

CT -=-- Cx + EcCs

Discussion of benefits follows a similar but more complex mechanism, and

will be discussed in Section 5.6.

Management of the Request Store is the next process to affect and be affected

by the token and its attributes. Management of the store (as far as the model

is concerned) consists of a periodic re-examination of all the tokens in the store,

with a re-evaluation and updating of their attributes.

The Design of Change Any token at or near the top of the priority queue

is then a candidate for the fix process, which in the familiar view means that

a maintainer takes a pending request and designs a software change that will

satisfy the request, placing the completed design into the Change Store for later

incorporation into a new release. The model actually takes a somewhat different

view of this process, though it is to be stressed that the difference does not affect,

the way that the maintainer works.

The problem is that while in principle the maintainer may take a request
1

and carry it through to the design of a change in one smooth action, in practice

it doesn't always happen that way. Jobs get interrupted by others of higher

55

urgency; a diagnosis may reach a point where it is discovered that the change

must be made in a module that is owned by another maintenance team; it may

suddenly be discovered that an error report actually arose from misoperation of

the system rather than from anything requiring a software change; etc etc. For

all these reasons, it is impractical to have the model assume a smooth, one-way

flow of tokens along the line from the Request Store to the Change Store.

Instead, the model takes a view in which tokens are considered to remain

in the Request Store until the resolution (withdrawal or design of change) is

complete. In this view, the actions of the maintainer add to the information

associated with the token, and correspondingly add to the historic cost attribute

and (hopefully) steadily decrease the future total change cost. On completion

of the design, the information will be sufficient to specify the change exactly

for inclusion in a build, and also to specify the unit test to be applied after the

build to check that the particular change works. At the same time, the future

estimate of the total change cost will become zero, and only at that point is

the token transferred from the Request Store to the Change Store. The steady

reduction in the total change cost will cause the priority to rise correspondingly,

which reflects the intuitive notion that a design once started should probably

be continued, but still allows it to be interrupted if another token should gain

an even higher priority at any stage.

It is in the design of change that the main people resource limitation occurs,

because all activity that contributes directly towards the next release is concen-

trated here until the build starts. The number of staff available to perform this

activity will be important to the model, and when later it refers to staff it will

56

be according to this definition:

Definition 5.5 The effective number of people available at any time t for the

design of change is known as the staff level and is denoted by F(t). The future

projection of variations in this value is referred to as the staff profile. The units

in which staff are counted must be compatible with the units of effort, cost and

time, so that numerically, s staff working for time t will deliver st units of effort

at a cost of stC s•

External Change Design Designs that reach the Change Store through

direct action of the team are not the only possibility. As has been remarked,

some changes will be in externally maintained modules, and this is where the

team must in its turn become a customer. The identification of a token as being

of this type will take place while the token is in the Request Store, and will cause

a request to be generated to the appropriate supplier via (3) in Figure 5.1. The

eventual arrival of the solution from the supplier via (4) will cause the transfer

of the token from the Request Store to the Change Store.

Token Creation Revisited There is an important conceptual point associ-

ated with this part of the process, concerning the rule that the team neither

creates nor destroys tokens. It has been explained that the customer does create

and destroy tokens, and suddenly we have the team acting in turn as a customer

— an apparent inconsistency.
1

We have not so far discussed in any detail the communication channels

between customer and team, or between team and suppliers. They have been

57

Monitoring Point

/

TEAM

k....-.1

SUPPLIER

Figure 5.2: Channel and Monitoring Point

assumed to be mere pipes or conduits. However, it will be seen that some

important measurements are made in those channels, and it is for that reason

convenient to give them some structure of their own. Figure 5.2 shows a channel

between a team and a supplier, though it could equally have been the channel

between customer and team. A Monitoring Point is shown on the channel,

which for the purpose of the model is assumed to be an entity placed mid-way

along the channel, and which observes the passage of requests and solutions,

collecting performance statistics by examining their attributes. The statistics

collection will be discussed further in Section 5.5 but here we may note that the

Monitoring Point may be regarded as the source and sink of tokens, creating

them in response to requests from the left and destroying them as solutions pass

back to the left.

Beyond the Change Store As far as the Change Store, tokens move in-

dividually from one point to another. From here on, they move in batches as
1

sets of changes are incorporated into new releases. Between the Change Store

and the Delivery Desk, the processes of editing the source code, recompilation

58

and testing take place. The exact details will vary from project to project,

and are no concern of the model, which summarises the whole process in two

parameters: the base build cost and the base build time.

Definition 5.6 The base build cost of a release, denoted by CB, is the com-

bined cost of editing the changes into the source code, rebuilding the software,

performing system tests upon it, and all the other costs that are entailed in pro-

ducing a working product. The base build cost is assumed to be a constant, and

is given to the model as a parameter.

Definition 5.7 The base build time, denoted by TB , is the elapsed time between

starting a build and delivering the release to the customer, but excluding any

extra elapsed time due to individual tests on the changes incorporated.

When a build, including its associated testing, is complete, the tokens repre-

senting the individual changes incorporated in the release are moved collectively

from the Change Store to the Delivery Desk. Here, a fresh attribute known as

the customer charge is calculated and added to the token's existing attributes:

this represents the amount of money the customer is required to pay for that

change. (The calculation of charge is a matter for the commercial agreement

between team and customer, and is not specified within the general model).

Finally, all attributes are copied from the token and recorded in the Repository,

and all attributes except the identity and customer charge are stripped from the

token, which is then returned via (2).

59

5.5 Flows, Delays and Queues

The model's strict association of tokens with maintenance actions, its control

over the creation and disposal of tokens, and its association of attributes directly

with tokens, all make it possible to derive consistent metrics to describe the pro-

cess as a whole. This section considers the aspects of this that are independent

of costs.

First, recall that tokens are created only at a Monitoring Point, and circulate

only within the team to the right of that Monitoring Point before being returned

to the Monitoring Point for destruction. Without any need to be aware of how

the team or its suppliers operate, and with no need to receive data from them

apart from the defined data associated with the token itself, the Monitoring

Point can determine the rates of flow of requests and solutions, and note the

distribution of delay times between requests and solutions. It is further aware

at any time of how many tokens are in progress within the team, and from

observation of the importance attached by the customer it can present these

statistics broken down by that importance.

Within the team, the visibility of flows, delays and queues is far more de-

tailed. For example, the number of tokens in the Request Store is exactly the

difference between the inflow from the Front Desk and the combined outflow of

withdrawals (back to the Front Desk) and change designs (to the Change Store).

The main flow from the Request Store to the Change Store is constrained by

available money and effort, and the overall change in performance from any

particular improvement or extra resource allocation can be calculated in terms

60

of the resulting change to flow rates, and consequential changes to delays and

queue lengths.

5.6 Incidents and Benefit Multipliers

We now turn to the consideration of the calculation of benefits. We begin with

a fairly simple hypothetical example, and examine the calculation of net benefit

from that point of view.

Suppose that the software product is installed at various different sites over

some geographical area. Suppose further that a communications module within

the software is able to signal to a central engineering point that the failure of

a hardware component has been detected, and to request the attendance of an

engineer to repair the fault. Finally, suppose that an error within this software

is causing occasional false alarms, each of which entails a wasted trip by an

engineer. How do we calculate the benefit of correcting this error? Several

factors must be taken into account:

• The average cost of a wasted trip is clearly a factor, and we may reasonably

assume that a good estimate could be provided.

• The number of wasted trips (say, per installation per year) is equally

clearly a factor, and again we may assume it to be available.

• The number of installations, and how the number is expected to change

in the future, will influence the benefit.

61

• The expected lifetime of the installations is also required: the longer it is,

the greater will be the total benefit accrued.

• The estimated time of delivery of the solution to the installations them-

selves is a factor: the correction does not start earning money until it is

in the field.

• The rate of distribution of upgrades may be significant: if each involves

a site visit in itself, there will be limitations of available effort and other

resources. The full benefit will not be available until the last installation

has been upgraded.

• If the system has only recently entered service, it is likely that new in-

stallations are regularly being added. If new installations are assumed to

be fitted at source with the latest available version of the software, up-

grade distribution costs may be avoided for these installations and benefits

realised more quickly.

Generalising, we will say that each wasted trip in the example is one incident of

that particular type. The benefit of making the change will then be the average

cost of one such incident, multiplied by the total number of such incidents that

would have occurred (within the time max of the model) had the change not

been made.

To bring some order to this list of factors, we now introduce Figure 5.3,

which depicts many of them in graphical form. 	 1

The X and Y axes of the graph are respectively elapsed time (likely to extend

62

Progress of
distributon

Ti,oNz

Figure 5.3: Release and Distribution Graph

over years) and number of installations in the field. The origin of the X axis

is "time now" or For consistency, a standard time period of five years,

with the month as the basic time unit, will be assumed in all illustrations and

examples.

Definition 5.8 The origin of time as far as the model is concerned is the

present moment, known as time now and denoted by Tnow •

The main solid line shows the projected number of installations, rising from /init

now to an eventual peak, and with a following plateau after which installations

are steadily removed from service until the graph ends at time Tmax.

Definition 5.9 The time horizon of the model, and the limit of iteration for

all calculations, is known as time max and denoted by Tra,,.. It may represent

the time at which the last installation is projected to be taken out of service,

or it may be chosen as some earlier time beyond which events are considered

sufficiently distant to be ignored.

63

(Note that the piecewise linear form of this graph is for explanation only; such

simplification is not required by the model). The variation in the number of in-

stallations over time will be referred to as the installation profile. It is calculated

from three input parameters as described in the following set of definitions.

Definition 5.10 The number of initial installations /bait is the number of in-

stallations in the field at time Tia. w•

Definition 5.11 The profile of new installations NI is the time-varying func-

tion of those installed per time unit.

Definition 5.12 The profile of retired installations RI is the time-varying func-

tion of those permanently removed from service each time unit.

Definition 5.13 The number of installations in the field at any time T is de-

noted by I(T). The future projection of variations in this value is known as the

installation profile. It is calculated as:

T	 T
/(T) = linit + E NI(t) — E RI(t)

t=TneW 	 t=T,..

Working to the right along the X axis, the time at which a solution is de-

livered to the customer is shown as TR, with a subsequent period of customer

acceptance assumed which culminates at time TD. The customer acceptance pe-

riod is taken to include any time necessary to prepare to begin the distribution

of the release.

Definition 5.14 The release time TR is the time at which a new, tested version
1

of the software is handed over from the maintenance team to the customer, and

at which the customer begins the acceptance period.

64

Definition 5.15 The acceptance time rA is the period of time during which the

customer is checking the acceptable operation of the new release and preparing

for distribution, before commencing distribution itself.

The model assumes that distribution of the software to the installations in

the field begins immediately after the completion of the acceptance period.

Therefore, if we denote the distribution start time by TD, we have

TD = TR + TA	 (5.16)

In general, distribution of upgrades takes place via two routes.

Firstly, the upgrade is delivered to the factory or other source of new instal-

lations. From time TD onwards, every new installation is assumed to contain the

new software. Secondly, a programme of upgrading the I (TD) existing installa-

tions commences, achieving a distribution rate of some number of installations

per unit time. The progress of the upgrade programme is shown as the "Progress

of Distribution" line on the graph, and is complete when I (TD) upgrades have

been made, or earlier if the retirement of installations will have reduced the

number of upgrades to be made. These latter quantities are defined as follows:

Definition 5.17 The distribution rate U is the number of installations per time

unit, in which the new release will be installed.

Definition 5.18 The release completion time TDONE is the time at which all

installations in the field have been upgraded with the new release. It is calculated

as:
i

TDONE = TD +
/ (TD) — E tT-DZE RI

U

65

In the above equation, TDONE appears twice: once as the quantity to be cal-

culated, and again as a component of the sum on the right hand side. There

is no obvious way to eliminate it from the right hand side, if only because I

and RI are non-analytic quantities. Because of that, though, any calculation of

the formula must be carried out iteratively. The double appearance of the term

then ceases to be a problem.

5.7 Benefits

In Section 5.6, the software change considered was a straightforward one, in

which it was clear that the individual saving per incident was relatively easy to

estimate in financial terms. Often, this is not the case. If we consider only faults

in the software, they may manifest themselves as merely irritating (giving rise

to customer complaints, perhaps), or even purely cosmetic, such as a spelling

error in a report that is never seen by an end customer. Enhancements can

be equally troublesome: how does one put an objective value on a change that

simply improves the software's human interface, but that gives no other obvious

benefit?

In defining a solution to this question, three guiding principles have been

followed. They are:

1. It is a commonplace in business that where objective measurements are

not available, subjective estimates must be and are substituted.

2. (Divide and conquer) Difficult questions should be split into smaller or-

66

thogonal components.

3. (Keep it simple) A solution that is just good enough, is good enough.

Here, the problem is to set a value for the saving per incident, where it is

known that a number of factors may contribute. Suppose it is believed that

a particular change will both reduce the number of customer complaints, and

reduce the incidence of incorrect hardware fault diagnosis by the company's

own engineers. The question to be answered is: "What level of expenditure in

making this change would represent the borderline beyond which the change

should not be made?" This is a difficult question in itself, which will be all

the worse if it has to be re-evaluated in the future in response to a decision

by the company to, say, increase perceived quality by making greater efforts to

deal with complaints effectively (meaning that it's then prepared to spend more

money per complaint).

However, the question can be broken down into four orthogonal sub-questions:

1. How many customer complaints are being made due to this problem, per

installation per year?

2. How much would the company be prepared to spend in the reduction of

customer complaints, per complaint avoided?

3. How many hardware diagnosis errors are being made, per installation per

year?

4. How much would the company be prepared to spend in the reduction of

hardware diagnosis errors, per error avoided?

67

At first sight, this may not look like much of an advance. One subjective ques-

tion has been replaced by two questions which are far more objective (questions

1 and 3), but there remain two questions (2 and 4) which are subjective in just

the same way as was the original.

However, an important gain has in fact been made. Questions 2 and 4 are

no longer linked to the particular change; their answers will apply equally for all

change requests which involve those factors. Their answers are now system-wide

parameters, and the information associated with the individual change request

is now far more tractable.

The number of different factors that are identified in this way is known as

the incident type count:

Definition 5.19 The incident type count J is the number of incident types that

have been identified as important in the calculation of the benefits of changes.

In general, if a total of J different factors have been identified that affect the

particular system, we require the setting up of a system-wide vector S i...j, and

a similar vector Ri.. j for each change request token. Entries in R represent ob-

served frequencies of events, while the unit benefits of reducing those frequencies

are contained once only in S.

Definition 5.20 The incident value vector S contains one entry for each basic

incident type, giving the estimated value of reducing by one the number of in-

cidents of that type that occur. One such vector is global to the model, and its

values are provided as parameters.

68

We must now examine more closely Question 1 in the list. It asks for the fre-

quency of the incident "per installation per year", but this form of denominator

will not serve in all cases. As examples we may suggest two other possibilities:

some proposed changes may have no effect on normal operation, but may reduce

the costs associated with each new installation. (Looking ahead to Chapter 8,

change request 6 on page 108 is of that type). Alternatively, a change may carry

benefit over the remaining years of the system's life, but be of such a nature

that the change benefit will be proportional only to the number of years itself.

We now have three examples in the "per what?" category, and more may

be added if they are found necessary in particular cases. We will next describe

the calculations for those three, which we will call the incident frequency bases.

Referring back to Figure 5.3 on page 63:

• For the number of years left ("per year"), the benefit starts at TD and

lasts until Tin.. Its value is simply

TX-TD

(Clearly, another example could have been based on the time at which

distribution is complete).

• For the number of new installations, the base is just the number still to

come after the distribution start time TD. This is

Tm..
E NI(t)

L=TD

• For the "per installation per year" case, the calculation involves the area

under the installations graph, but only that part of it that is to the right

69

of the line of distribution progress. It is split into two smaller areas. One,

labelled A in Figure 5.3, represents installations that have been upgraded

in the field; the other (labelled B), represents those installations that have

been provided new after time TD. Two factors make the actual calculation

quite complex:

— The representation on the figure implies (area B) that the last new

installations are also the first to go when numbers start too decline.

We actually calculate on a last-in, last-out assumption.

—Variations in the shape of the installation profile may change the

geometry of the situation by varying where lines intersect. This too

must be taken into account.

The actual algorithm for "per installation per year" will not be presented

here.

Our three examples of frequency bases need not be restricted to that number;

in general:

Definition 5.21 The frequency base count Q is the number of frequency bases

that have been identified as important in the calculation of the benefits of changes.

For each incident type, we must then specify both the frequency with which it

occurs and the base for that frequency.

Definition 5.22 The incident frequency vector R for a pariicular change con-

tains one entry for each incident type, giving the estimated difference in fre-

70

quency of that type of incident that the change will bring about. One such

vector is associated with each change token.

Definition 5.23 The frequency base vector for a particular change contains

one entry for each incident type, giving the index in 1...Q of the frequency

base associated with the corresponding incident frequency entry in R.

For any given release time, we can now define the frequency multiplier vector,

which will apply across all changes.

Definition 5.24 The frequency multiplier vector G has one entry per frequency

base. For a given release time TR, its entries contain the actual values by which

the incident frequency values in R must be multiplied, to give the number of

incidents saved by including a particular change in a release.

5.7.1 Gross and Net Change Benefits

We are now in a position to define the gross change benefit BG:

Definition 5.25 The gross change benefit, denoted by BG, is the total assumed

value of the change once it has entered field service. It is taken across all

installations and until the time max Tms. of the system.

J

BG =	 ,Sy ift;Giyi(
3=1

Next, to derive the net change benefit, we need to know the future cost associated

with the change. But this is just CT = CX + EcC s, so the net change benefit is

represented by

BN = BG - CT	 (5.26)

71

We also observe that we have defined a rejection criterion for changes: if BG <

CT then the net change benefit BN will be negative, and the change should not

be attempted.

5.8 The Definition of Priority

The planning of software releases is a juggling act involving benefits, costs and

resources. We have now introduced each of these elements into the model, and

must next consider how to specify the optimum release. We wish to maximise

the net benefit, within the constraints of available resources.

Constraints might in general apply to many kinds of resource, including

direct expenditure (cash flow), available staff effort, and such things as time

allocation of specialised facilities. We do not attempt to treat all possibilities

in the model; instead we focus on the specific and almost universally observed

restriction of available effort (Section 2.2 on page 10).

Our problem, then, is to maximise the net benefit within the constraint of

available staff effort. In this section, we discuss how the concept of priority

contributes to the process.

5.8.1 Normal Priority

The priority of a request for change (a token) represents the team's view of its

relative value, compared with all others in the queue. In terms of the finance-

driven view of their motivations given on page 46, that translates directly into

consideration of which tokens will deliver maximum benefit for minimum ex-

72

(5.27)

penditure.

If all resources (including effort and money) were freely available, we would

not need to discuss priority at all. We would simply include all changes that

had net positive benefit in the next release, and with no resource limitations we

would be able to issue that release immediately.

In practice, our limiting resource is human effort: we must use that effort to

best advantage. If two units of effort are available, we use them better for two

fixes at one effort unit each that each benefit us by £5000 than by choosing an

alternative fix that takes the two effort units for a net benefit of £9000.

The priority, then, must express the desirability of a change in terms of its

net benefit relative to the proportion of the scarce resource that it consumes.

But the benefit and resource expenditure have now been derived, in terms

of the parameters of the model and the attributes of the tokens. In fact, the

priority of a token is now seen to be simply

In passing, we may note that the definition of priority also reveals another

expression of the rejection criterion mentioned on page 72. These are the ones

whose net change benefit is negative, and by examination of the above equation

we see that these are correspondingly indicated by a negative priority.

5.8.2 Infinite Priority

As has already been indicated, there are situations where the financial calcu-

lation of priority is unnecessary, because other factors make it essential that

73

a particular change is carried out with utmost urgency. These situations in-

clude changes mandated by legislation, and in safety-critical systems where the

absence of change introduces a safety hazard.

Rather than try to force the model to treat these changes as imperative by

choosing some large but finite benefit to accredit to them, we actually go further

by allowing their priority to be set to an infinite value directly. Infinity can be

a dangerous concept to introduce in a model, but here the only subsequent

operation in which it will take part is the sorting of the tokens in the Request

Store, and an infinite value then floats naturally to the top.

When more than one token has infinite priority, they will all float to the

top of the list but the model defines no ordering among them. This is not a

problem: the point is that they must all be selected for the next release, and if

they cannot be (i.e. if not enough effort is available) then the release is simply

unacceptable as a whole.

5.9 Release Value

The value of a release, as we require it, is generally to be expressed as the return

on investment, taking into account all the costs and benefits of that investment.

Return on investment can be calculated in many different ways [WDK93], but

for the purpose of this thesis a simple calculation will be used. We will take the

value as being the difference between the benefits and the costs within the time

horizon of the model, and we will ignore any future discounting of the value

of money. We observe that in a practical implementation, this formula should

74

be replaced by one that reflects the accounting practices of the organisation

involved.

Since we can assume here that we are dealing with a specific projected release

time, the calculation of priority for each token can be undertaken, and in the

course of that calculation we will discover the net benefit BN(c) associated with

any individual token c. We require two further results:

• A list CL of which tokens will actually be included in the release, since

only their net benefits will contribute to the release value.

• An assessment of the cost CR of the release itself.

Each of these turns out to be fairly straightforward.

5.9.1 Change List

For the list of tokens, we examine those in the Request Store, selecting them

in order of priority (highest first) until we cannot select any more within the

resources available up to the time of release. (But the model will never extend

the selection to include tokens with negative priority). This presupposes, of

course, that we have calculated the available resource.

For that, we may need to distinguish between resource types. People's time

is the most obvious, but in an exotic application the use of special equipment

or the time of one specific expert may be at the highest premium. Here, and in

order not to complicate the situation beyond bounds, we will assume that the

available effort of the maintenance team is the limiting factor.

75

The available effort, then, will be the product of the number of maintainers

available and the time to the start of the build — not the time of release. In

practice, the number of maintainers can be expected to fluctuate over time, and

we may wish to explore the effect of adding people to the team during the course

of preparation of the release. We recall the concept of the staff profile, which is

the time-varying projected number F(t) of maintenance staff available, and we

note that the total available change effort or E(TR) is

TR-TB
E(TR) = E F(t)	 (5.28)

t=T„.„,

where 'TB is the base build time.

This is not yet quite the whole story, for some changes will be processed by

teams other than the one under consideration. These changes incur direct cost

as their external change cost, but they are also subject to time limits. With

each such change, we assign a non-zero value to a new parameter: the change

delay.

Definition 5.29 The change delay, known as T, is the time before which this

change cannot be available for inclusion in a release. Thus, no change can be

included for which

Tc > TR - TB

Given E and for each change Tc, the selection of tokens for the release

proceeds as follows:

1

Definition 5.30 The change list CL is derived by the following steps:

76

1. Arrange the tokens in the Request Store in descending order of priority.

Begin with the change list empty.

2. Starting at the head of the list of tokens, accept each token into the change

list if and only if it has positive priority, and its acceptance will not cause the

sum of change efforts Ec for the tokens in the change list to exceed the available

change effort E.

3. Also exclude any token for which Tc > TR- TB.

As a by-product of this process, any token that is excluded but has infinite

priority (see Section 5.8.2) should be reported, since in such a case the release

cannot fulfill a basic requirement placed upon it.

5.9.2 Release Cost

There remains to be calculated the cost associated with the release itself, known

as the release cost or CR. This is the sum of:

1. The base build cost or CB

2. The acceptance cost or CA

3. The distribution cost given by Cul(Tn+ TA) (where Cu is the unit upgrade

cost or the cost of upgrading one installation) and known since the release

time is a postulate.

Definition 5.31 The acceptance cost, denoted by CA, is the total cost incurred

by the customer between receiving a new re/ease of the software and beginning

77

its distribution. It thus includes, not only the cost of any customer testing, but

also any costs incurred in the preparation for release.

Definition 5.32 The unit upgrade cost, denoted by Cu, is the average cost of

upgrading one installation in the field to the new release of software.

Definition 5.33 The distribution cost, denoted by CD, is the total cost of up-

grading all the installations that are in the field at the time of release. Hence:

CD = CuI(TD)

Thus we have the definition of the full release cost CR:

CR ------- CB + CA + CD
	

(5.34)

From all of that, we are then able to express the release value at release time

TR as

v(TR) . (E BN(c,TR)) — CR	 (5.35)
e in CL

where the expression within the right hand side also gives the release benefit BR

BR(TR)= (E BN(c, TR))
c in CL

(5.36)

5.10 Optimum Release Time

We are now in a position to define the calculation of optimum release time

Topt . If we are prepared to iterate to a solution (and we are), the calculation of

optimum release time Tcpt is simply a matter of calculating release values V(t)

78

for a sufficient range of possible release times t, and then selecting the time

which offers the highest value. So at last:

V(T0) max(V(t)) : T0< t <
	

(5.37)

Discussion: There are two possible cases in which use of the result of this

calculation may need care:

1. The value V(t) may never rise above zero: that is, V(T0) may be negative

or zero. In this case, the model has determined that the most cost-effective

course of action is not to make any new release of the software at all.

2. There may not be a single unique maximum. Perhaps there are two or

more equal peaks, or even a plateau at the peak. In this case, the model

is reporting a choice between equally valid release times.

5.11 Discontinuities

There are questions that might be asked of an implementation of the model,

whose answers could be generated automatically if the model possessed simple

continuous formulae linking its inputs to its outputs. Continuity would hold out

at least the hope that the following operations could be carried out algebraically

instead of by trial and error:

Tolerancing: The formulae could be differentiated with respect to each input

variable in turn, leading quickly to estimates of the sensitivity of output

values to small changes in the values of the inputs, and isolation of which

79

input parameters were most sensitive and should therefore be scrutinised

most carefully

Finding Local Maxima: Available tradeoffs could be investigated, if they

themselves could be expressed as formulae. (Example: suppose the prod-

uct of distribution rate and cost per upgrade turns out to be constant:

which pair of values is best?)

Without continuity, the model's outputs will from time to time jump suddenly

from one value to another, even in response to arbitrarily small changes in the

input values.

Unfortunately, continuity is not a property of the model. There are three

reasons.

Firstly, the operation of the model involves a step at which the change

requests are sorted into priority order. If two or more priorities are nearly

equal, then very small variations in input values can switch the outcome of the

sort to a new state.

Secondly, after the sort a cutoff is imposed on the change list according

to the effort available. A change is either included or not; arbitrarily small

input variations will cause step variations in the content of the list of accepted

changes.

Thirdly, the selection of which release is best rests on locating the maximum

point on an irregular curve which may have several local maxima at similar

heights. Again, arbitrarily small input variations can cause a step variation

when a new local maximum becomes the global maximum.

80

This is unsatisfying, but it arises from the situation being modelled and not

from any local limitation of the model itself.

5.12 Limitations

There is one glaring omission in the model, which would in general need to

be rectified in practice. It is that the arrival of change requests is assumed to

stop after the plans are drawn up: there is no element of prediction for new

requests that will arrive before the release is made. An accurate prediction

would require a crystal ball beyond our present reach, but knowledge of the

past history of arrivals of requests would allow an assumption of future arrivals

based on the past rates, costs and benefits. Actual change requests will of course

be incorporated into the model as they arrive to see the effect on the plans, but

prediction could reveal early the need to build in any required contingency.

There are some simplifications in the model, where complete generality has

been sacrificed for the sake of clarity. An example is in the expression of the

distribution rate U, which is given as a constant but which could more generally

have been made a time-varying function. Equally, the point in time at which new

installations are assumed to carry the new release is assumed to be the same as

the start of the field upgrade programme. In such cases, the extra calculations

would not be severe. The judgement was, however, that the approximations

were likely to be more acceptable in practice than the more complicated data

entry.

The model assumes that the base build cost, base build time, acceptance cost

81

and acceptance time for a release are all constant values. The system test and

acceptance processes will, however, include some component for individual tests

of the changes incorporated. If required, the costs and times of these individual

tests can be added to the model as extra token attributes, to be incorporated

respectively into the calculations of change effort and external change cost.

The model in the form given here calculates the release value as a simple

profit value, ignoring both future discounts on the value of money and any as-

sessment of the ratio between profit and investment. Most organisations will

normally take both these factors into account when comparing investment op-

portunities, though exact methods do vary. In order to take into account the

preferences of any particular organisation, it will be necessary to rework Equa-

tion 5.35 and (for the future value of money) its contributory equations 5.26

and 5.34.

5.13 Chapter Summary

The handling of change requests and the subsequent construction and distribu-

tion of a new release of software have been described quantitatively, together

with calculations that permit the outcome of actions and decisions to be seen.

Effort, time and money are the main quantities that appear in the model, and

money its chief guiding concern.

The model's inputs are a set of change requests and their associated data,

and a set of more general parameters that include descriptions of the build

and distribution environments. The model predicts the financial and other

82

consequences of a decision to release the software earlier or later, and selects

the release time which will yield the greatest net benefit.

The model may be used in this way to select the best release time, but it

can also quantify the effects of process improvements by altering the values of

the parameters that would be affected and seeing the results in terms of the

new best plan.

Small changes in the parameters fed to the model may result in large differ-

ences in the figures generated. This is an inevitable consequence of the existence

of the sorting process by priority among the change requests.

1

83

Chapter 6

Exploring the Model

6.1 Introduction

This chapter describes the use of the model in preparation for the chapters on its

implementation. Section 6.2 introduces the concept of the baseline plan, which

is the result of running the model with best-estimate values. Section 6.3 covers

the basic exploration and evaluation of this plan, and Section 6.4 discusses the

evaluation of alternative situations and their comparison with the baseline.

Section 6.5 looks at how to cope with uncertainties in input values, and

how to tell which are the most sensitive and should therefore be checked most

carefully.

Section 6.6 then discusses the formation of alternative plans, based on events

that may occur and whose consequences need to be anticipated.

Section 6.7 contains remarks on the possible dominance of certain quantities

in the determination of results.

84

6.2 The Baseline Plan

The baseline plan corresponds to the best estimate of future events, and will be

the central planning document. Its construction is carried out with the aid of

the model and is quite simple in concept: one establishes best-estimate values

for all the input parameters of Table 5.1, and one performs the calculations

described in Chapter 5. The requirements of Section 5.10 (Equation 5.37) mean

that many of the calculations must be iterated many times.

The primary results of the calculations are the values of the optimum release

time Lpt and the release value V(T0) at that point. The secondary results are

then the change list CL and the re/ease completion time TDONE•

In the absence of other constraints, these results will be accepted as the

release to aim for. However, if there are other constraints such as a limit imposed

on the re/ease completion time then the baseline release will be selected as that

which delivers the best value within the constraints.

6.3 Exploring the Baseline Plan

The baseline calculations yield one optimum scenario, but all scenarios had

to be calculated in order to select it. By examination of these sub-optimal

alternatives, it will be possible to see and to comment on whether the baseline

plan is clearly the best, or whether any other possibilities are nearly as good.

If they are, then the decision is not , clear-cut and the fact needs to be reported.

85

6.4 Alternative Plans

Once the baseline plan has been established, it becomes possible to see the

effects of possible changes in the parameter values.

It may be proposed, for example, that a new member be added to the team

in order to reduce a backlog of change requests. This is a simple change in the

model's staff parameter, in which its value increases by one after some allowance

of time for recruitment and perhaps training. This in turn increases the available

change effort, which increases the number of changes accepted into the change

list. The extra net change benefit from the added changes then adds to the total

release value, and from the amount of that increase an assessment can be made

of how well justified the extra team member would in fact be.

Probably most alternative plans may be dealt with in a similar manner, by

adjusting the appropriate parameters and observing the difference in outcome

of the calculations. Some, however, will also involve added constraints on the

solution, such as a deadline for the full delivery of the new release to the field. A

simple deadline will invalidate any release time that cannot meet it, and reduce

the range of the search for the optimum release time. In the most general case,

an arbitrary constraint would invalidate some particular subset of the possible

release times, and the search for the optimum would proceed with the rest.

1

86

6.5 Stability

Each plan accepts all its parameters as though they were known with perfect

accuracy, but of course they are not: they are merely best estimates.

It is therefore prudent to ask whether possible inaccuracies in the estimates

would affect the outcome of the plan, and if so to what extent. This is a process

well known to designers of electronic circuits, where component values cannot

be exactly known and the effects of tolerances must be taken into account.

It is here that the non-linearities inherent in the model have their greatest

effect, and they do make the process rather difficult. If, for example, we decide

that the value estimated for a particular parameter may be out by 10% either

way, we may re-run the model with those boundary values and observe that

(say) the plan remains intact. But perhaps a 5% increase in value would have

led to a radical change in the plan through crossing one area of non-linearity,

only to find the original plan reinstated at 7%.

We will not offer a perfect solution to this problem, though we do note it

as a subject for future research. Here, we need observe only that if extreme

values do not suggest a change in the plan, the presence of an anomalous region

in the unexplored part of the range need not upset us: it would represent an

alternative plan which itself could not be relied upon since by its definition the

parameter value is not considered reliable enough to guarantee hitting it.

The exploration of stability in practice, then, is a process of varying parame-

ter values to the limits of their likely ranges and checking whether the resulting

plan would differ significantly from the baseline. If it does, then the first prac-

87

tical reaction is likely to be to re-examine and improve the estimate in order

to reduce its range; if this is not enough, the variation must be noted as a risk

that the planned release date (or value, or content) may not be met.

6.6 Risk Evaluation

The accuracy of estimated values is one source of variation in the final outcome,

but there is another which arises from radical changes in one or more parameters.

This is the risk analysis part of the planning process, whose purpose is to test

how the plan might be impacted by external events. Small impact means the

events would be manageable if they occurred; large impact may imply the need

to prepare additional contingency plans.

The specification of what events (risks) should be checked for is a matter

of practical judgement, and no model can substitute for that. But the effects

of those events are seen as changes in the parameters that are provided to the

model, and the impacts on the plan are seen as the consequent changes in the

output values. The model thus plays its part in the risk evaluation process.

Risk evaluation, then, is conducted by assessing the new parameter values

should the event occur, and re-running the model to observe the effect. On the

model, a risk is implemented just as an alternative plan.

88

6.7 Dominant Values

The exploration of variations in the input parameters may be expected to reveal

that some are more important than others in the determination of the final

result: that is, that the values of the less important parameters may vary quite

widely without materially affecting the outcome. This is a beneficial effect, for

it is what allows attention to be focused on the major parameters in terms of

checking and reassessing their likely values.

An example of dominant values will be seen in Chapter 8, where in the

list of eight change requests to be studied, four of them generally come out to

have much higher priorities than the other four. This usually guarantees their

presence at the head of the priority table and in the recommended release.

In general, those changes whose benefits are given in terms "per installation

per year" are likely to gain the highest priorities. That is because the frequency

multiplier for these is derived from the area under the installations graph and

is typically much larger than the alternative multipliers. It seems that an area

measure of that sort is not intuitively estimated by people, which can also make

the figures generated by the model larger than might otherwise be expected.

6.8 Chapter Summary

At its most basic, the model may be used to predict the outcome of a given

maintenance situation. However, its main value is in the ability to explore

alternative situations. Input values will be in large part estimates, and by

89

varying their values it is possible to see how uncertainties will affect the main

prediction. From that, values whose estimates may need further refinement may

be identified.

Future events (risks) that may upset the plan may also be explored, giving

an opportunity for contingency plans to be created as and where necessary.

In most situations, there will probably be some parameters whose effect on

the outcome is stronger than that of others. Change requests whose impact will

be felt in proportion to the number of installations and to the number of years

of use are likely to be associated with this effect.

90

Chapter 7

Implementation of the Model

7.1 Introduction

This chapter describes the implementation of the model as a computer program.

Section 7.2 describes the development package used, and Section 7.3 describes

the implementation in more detail, with full descriptions of the display screens

that are seen by its user. Section 7.4 notes some limitations of the implemen-

tation.

7.2 Development Package

HyperCardTM is a development package which runs on the Apple MacintoshTM

computer, and like the machine itself is well suited to applications with a graph-

ical interface. Applications developed in this way do not stand alone but run1

under the main HyperCard program. This acts analogously to a conventional

91

language interpreter, though there is a certain level of automatic precompilation.

User applications are referred to as "stacks" because they appear in the

manner of a stack of index cards, of which any one can be at the front and

therefore visible at any one time. In terms of a more conventional description,

cards are alternative screen displays, which may be presented to the user in any

desired order and in response to user actions.

Cards may contain two main types of active element: buttons and fields.

Buttons are sensitive to mouse clicks from the user, which trigger scripts (pro-

gram fragments) written as part of the application. Fields may also be sensitive

to clicks, but their primary purpose is as holders of fixed or editable text. Art-

work may also be drawn on cards.

The scripting language of HyperCard is comprehensive and flexible, but can

be slow in heavily iterative applications such as the present model. To get

around this, program fragments may also be coded in a conventional high level

language (C and Pascal are supported) and included in the application in their

object code form. Use has been made of this facility in the implementation.

7.3 The Implementation

The model is implemented as one main HyperCard stack and several subsidiary

ones. The subsidiary stacks are a stack called "Background Index" to be de-

scribed first, and an expandable set of "situation stacks" which are cloned from

the main one.
	 1

The Background Index stack is important to the implementation, but does

92

not implement any central part of the model. As the model runs, cards are

created and destroyed as scenarios are calculated or change requests are added

and deleted. HyperCard has no built-in mechanism for keeping track of such

changing collections of cards, but the model has to maintain lists of what exists

and update the lists as changes occur. It is this process that is carried out by

the handlers in the Background Index stack.

The situation stacks provide the means whereby alternative situations may

be investigated in the model and compared afterwards. The mechanism is simple

in concept. After initial data entry and the preparation of the baseline plan, the

entire main stack (containing both data and programs) is copied and named.

Each time another variant is created, it too is copied and named. The names of

these new stacks are collected in a menu available to the user, and comparison

of situations is then a matter of switching from one to another by selecting the

menu items.

The mechanism of situation stacks is wasteful of space because of the copying

of all the program information that takes place. Greater recourse to the "stacks

in use" facility would ameliorate the problem, but it was considered acceptable

in a prototype system.

7.3.1 The Main Stack

The main stack of the model is called "Priority Control" and contains all the

meat of the programs itnd data. There are six backgrounds whose cards the

user sees:

93

• The Welcome background, which is no more than an introductory display

• The Summary Screen background, which with its single card contains the

summary graph of profit against release dates

• The Scenario background, each of whose cards describes the consequences

of selecting one particular release date

• The General Parameters background, whose single card contains the gen-

eral parameters of the model

• The Change Requests background, each of whose cards contains the data

for one change request

• The Change List background, whose single card just acts as an index into

the change requests. Clicking on the title of any request takes the user to

that card.

The middle four of these will now be illustrated and described.

Summary Screen

Figure 7.1 shows a typical summary screen. At the top are two headers. The

left header announces that this is indeed a summary screen display; the right

that it refers to the baseline plan. When alternative plans are explored, this

header is a reminder of which plan is currently on display.

In the centre is a graph, which shows the calculated release value V as a

function of release time TR. The graph starts out at a negative value, reflecting

94

Figure 7.1: Sample Summary screen

the expense of a too-early release in which there has not been time to include

any changes at all. It then rises by steps, as effort to include one change after

another becomes available. Between steps it falls slowly; here extra effort is

also becoming available, but it needs to accumulate over a month or two before

another change can be included.

The graph eventually reaches a peak, which represents the optimum release

value occurring at the optimum release time Topt . An arrowhead marks the

peak, with a legend that confirms the time at which it occurs.

After the peak (in this example) there is a steady decline as the benefit of

inclusion of any further changes is outweighed by the loss in overall benefit due

to the delay in delivery.

The vertical axis of the graph is automatically scaled to accommodate the

peak value, which is shown against the axis. This figure must therefore always

be checked when comparing different graphs, since two visually similar ones may

in fact be drawn to very different scales.

95

Scenario Display Baseline Plan1	

Priority Description
1401275 Custoeer Lockout
431250 Transmission Lass
600333 Bell Tinkle

Abee
4444	 woe

357300 Data Chcrce Speedy,
47000 Database Auto Load
31250 Dropped Call.
21000 One-5 tep I ra la I
-4300 En; I I sh Coenands

0	 Month

<ZI 13 C>

Distribution Completion Time:
after month 36

£4,589,188
£705,050

£3,884,138
551 (Show RFCs)

Release Benefit
Release Cost

Release Value
Return (X)

Figure 7.2: Sample Scenario Display

A small triangular marker sits on the time axis, at month 26 in this example.

The user can drag it to any month; it sets a limit to the number of scenarios (see

below) that will be generated in detail for subsequent examination. Scenario

generation is time-consuming, and those well after the peak are of little interest.

At the top right is a square button divided horizontally into three parts.

The user clicks on one of these parts to be taken to that section of the model.

Scenario Display

To each value of release time on the summary screen (up to the time set by

the limit marker) there corresponds one scenario display screen which may be

examined for further details of the implications of a release at that time. An

example of a scenario display is given as Figure 7.2. It has the same two headers

and its main feature is again a graph, though this time it is a composite one.

In the example, the release time under consideration is after month 13, and a

solid vertical line extends the whole height of the graph from this point on the

96

time axis, as a marker.

To the left of the release marker and nearest to the origin is another graph

(here of constant height) showing as a function of time the available staff F.

This graph is auto-scaled vertically so that it always occupies the same part of

the overall picture, and its peak value is marked on the vertical axis. Its right

boundary (solid line) occurs to the left of the release marker by an amount equal

to the base build time TB , so the area under it is the available change effort E.

In some cases there will be a vertical dashed line just before the right bound-

ary of this graph. When present, it indicates spare effort which is not enough

to accommodate another change into the build.

Starting further up the vertical axis, the number of installations I is then

plotted as a function of time. Here, it rises steadily over two years to a maximum

of 4700 and then remains constant at that value. The graph is automatically

scaled such that its peak uses the full vertical extent available on the display.

Using the same vertical scale, the progress of field updates after the release

is then plotted. It is the diagonal line to the right of the release marker. Its

start is delayed by the acceptance time TA (here two months) so it begins at the

distribution start time TD. It then rises at the distribution rate.

Also from the distribution start time, new installations are assumed already

to contain the new release. The dashed line which starts on the installations

graph at the distribution start time and runs horizontally to the right reflects

this. When it intersects with the distribution progress line, distribution is com-

plete. The completion is marked by a vertical dashed line from the meeting

point down to the time axis, and a legend below the axis confirms the comple-

97

tion time.

To the right of the composite graph is a table, containing a list of all the

outstanding change requests with their assigned priorities. The list is divided

into two sections by a pair of rows of asterisks; above these are the changes to

be included in the release and below are those rejected. There are two rows of

asterisks because of one special case: if a mandatory change cannot be included

in the release through insufficient effort being available, it will be listed between

the rows. This is a means of flagging what would in practice be a severe headache

for the maintenance manager. The table is shown to the right for convenience

here, but in the actual implementation it has to overlay part of the composite

graph in order to fit within the physical display screen. It is shown or hidden

via the "Show RFCs" button below the composite graph.

Below the composite graph is a pair of arrow buttons (with the release

time shown between them). These buttons will switch to the previous or next

scenario, for comparison of release dates in the form of a slide show. There

will sometimes be situations where the optimum release time as calculated will

be unacceptable due to other constraints, and it is then necessary to explore

other scenarios until the best within the constraints is found. The slide show is

convenient at such times, and it may be interspersed with visits to the summary

screen by clicking with the mouse anywhere within the main graph area. From

the summary screen, any scenario may be visited directly by clicking at or above

the appropriate point on the time axis, including on the line of the summary
1

graph itself.

At the bottom left of the display are the primary cost and benefit figures for

98

General Parameters	 Baseline Plan	 1

Installations Initial

Month Staff New Retired 3500

0.5 50 0 3660

2 0.6 50 0 3600

3 0.5 50 0 3650

4 0.6 60 0 3700

5 0.5 so 0 3750

6 0.6 50 0 3800

7 0.5 50 0 31350

8 0.5 50 0 3900

9 0.5 50 0 3960
10 0.5 60 0 4000

Base Build Cost	 100000 150000 ACCIELtange Cost
Base Build Time. 2 2 Acceptance Time

_ger cost (D/mQ021. 5000 100	 Upgrade„Unit Cost
200	 DIStM131.1tion Pate

Figure 7.3: General Parameters screen

the scenario. The table shows the release benefit, the release cost, the release

value and the return on investment.

General Parameters Screen

Figure 7.3 shows the data entry screen for the general parameters of the model.

The multi-column table is a scrolling field which actually contains 60 lines —

one per month within the time horizon (i.e. up to time max). One column

gives the available staff, and to its right are two columns giving the numbers

of new installations and retired installations for that month. The rightmost

column then shows the calculated number of installations actually in service:

just above it is a field giving the number of initial installations.

The other parameters are entered in the fields at the bottom of the screen,

and are labelled according to the terms used in Chapter 5.

The buttons to the right of the scrolling field lead to dialogues which make

it easier to set constant values across ranges of months.

99

Ti tle l'frall911.991011 L039

Occasionally, a call viii lose
its speech transaission. One
10 ot the times this happens,
an engineer is called out to
investigate.

Request For Change 	1 	 Baseline Plan

<3 L> Delete This RFC Ire?'

External Change Cost 6000
Change Effort 2

Total Change Cost 15000

0 Force Selection

Value
Incident Detail

Frequency_ BaseType
I
0.8
5
50
50
20

External Spend
Internal Spend
Service Interruptions
Customer Complaints
Callouts
Engineering Hours

1

0.1

0,

I

1

•V

EU.110

FREOLIENCY BASES

I por PS per mintet
2 mr now Ins
3 p.r month

Figure 7.4: Data entry screen for a change request

Change Request Screen

Figure 7.4 shows the data entry screen for a change request. It is filled in with

data for one of the example requests used in Chapter 8.

At the top, with the standard components of the display header, are two ar-

row buttons which permit sequential stepping through the other change requests

and a further button for use when a request is to be deleted.

Below this and to the left are entered the short title of the request and a

longer description; the description is for illustration but is not otherwise used

by the implementation.

To the right of the description are the estimated cost and required effort

for the request, and the total cost is calculated by reference to the staff cost

parameter entered on the General Parameters screen.

Just below the cost information is the check box (here shown clear) which

when checked will mark this request as mandatory.

100

The lower half of the screen shows the assessed benefits of the change. The

second column lists the incident types, and for each type the incident value is

shown in the leftmost column. The incident values are shown on each change

request screen, though they are the same for all.

The incident frequency values are entered in column 3, and we see that

the need for this request comes from the numbers of service interruptions and

callouts. With each frequency is associated a frequency base in column 4, given

here as a code number to be interpreted according to the small table at the

bottom right of the display.

Above this latter table is a button labelled "Edit." This, when clicked,

reveals a small display of data editing buttons with instructions for their use.

7.4 Limitations of the Implementation

Firstly, it is unlikely that the HyperCard development system would be used in

a practical implementation. Its flexibility and ease of graphic design have made

it a good choice for the purposes of this thesis, but there is a penalty in terms

of speed of operation. It copes well when asked to deal with a list of only eight

change requests, but if that number were to increase perhaps into the hundreds

the speed would be unacceptable.

A practical project to which the method was to be applied would in any

case be expected already to have its own database system for change control.

It would be much more reasonable to expect that the functionality would be

added to the existing system, and that the (presumed) existence of a specialised

101

database package would provide the speed to handle the algorithms.

In entering the benefits associated with a change request, the implementa-

tion does not permit one incident type to be associated with more than one

frequency base. If, for instance, a fault is incurring the same type of cost both

per installation per year and per new installation, only one of these can be

entered. This restriction allowed the screen display for change requests to be

simplified.

The implementation does not allow for the change delay parameter. This

would be required in a full implementation.

7.5 Chapter Summary

The model has been implemented on a Macintosh computer, using the Hyper-

Card development system. Alternative plans are created as separate stacks (in

the terminology of HyperCard; databases would be an approximately equivalent

term). Exploration of plans is a matter of navigating around and between these

plans, and navigation controls activated by the mouse are provided and have

been explained.

The implementation has four types of display, of which two are used for

data entry and two for the presentation of results. The data entry displays are

for change requests and for the model's general parameters; there is a main

summary screen with a graph of profit against release time, and for each release

time examined there is a scenario display showing the detailed composition and

outcome of a release timed at that point.

102

Chapter 8

Evaluation of the Model

8.1 Introduction

This chapter describes the use of the model with sample data. Although the

model has been tested on real projects, there are two reasons why actual data

from those projects will not be presented here:

• Full descriptions would contain many more change requests than are pre-

sented here, and would in general require many more pages of explanation

in order not to distort their details. The added length would not enhance

the description of the model's operation.

• Use of actual data would be commercially sensitive, and would restrict

the final availability of the thesis as a whole.

The decision is therefore to base the chapter heavily on one particular project

on which the model was tested, but to insert specimen figures that will illustrate

103

the points made. The numbers used in the examples do not therefore reflect

actual or typical assessments of costs and benefits. The real project does have

in common with the one presented here:

• Importance to the core business of the company. If this system fails, a lot

of customers get very upset.

• Serving a large customer base.

• Significant distribution costs. When the installation of a software upgrade

involves the replacement of memory boards at each installation, it gets

expensive.

None of these attributes limits the generality of the model, but between them

they do permit a wider range of behaviours to be explored.

Sections 8.2 to 8.2.3 set out the baseline against which the subsequent exam-

ples are to be compared. Section 8.2 describes the system generally, including

the data that will be entered as the general parameters. Section 8.2.2 then

presents the change requests that are assumed to be present.

Section 8.2.3 then presents the results of running the model on the sample

data. The displays are shown, and a table gives a comparison of the model's

conclusions for the range of possible release timings.

Each of Sections 8.3 to 8.7 then considers a variation of the baseline situation,

and examines how the baseline plan would be affected.

Section 8.8 presents a summary of the results, comparing the assessments of

the different variations.

104

8.2 The Baseline Plan

8.2.1 The Situation

Our hypothetical system is owned by a (presumably also hypothetical) telecom-

munications company and forms part of the telecomms network. It is a con-

centrator, which is the term for a small switch serving perhaps a few hundred

telephone customers. The switch handles all local calls within its customer base,

but is parented on a larger switch which deals with calls to and from wider ar-

eas. The parent switch also handles requests for most specialised services. The

concentrator software probably consists of around 100,000 lines of code — about

a quarter of a mile by Foster's metric. Within the concentrator, the software

is held in read-only memory on a replaceable circuit board, so installing any

upgrade means a site visit and a board replacement.

There are currently 3,500 installations in service, and that number is pro-

jected to rise to 4,700 over the next two years. After that, no further units are

expected to be installed. None will be taken out of service during the next five

years, which is as far ahead as our planning is expected to look.

The software is maintained by one person, who also has another project of

similar size to look after. The ongoing effort available for this task is therefore

0.5 of a person. The cost of employment for a full-time person is .£60,000 per

year.

There are only eight change requests outstanding on the software, which is a
1

small number for such a system but convenient for the purpose of discussion. In

105

partial compensation for that, each request will require quite substantial effort,

ranging from 0.5 to 3 person-months. In addition, implementation of each

change is associated with a certain amount of direct expenditure in re-issue of

operational documentation etc: this ranges from £100 to £5,000.

The build process for such a system may take no more than a day, but

the severe consequences of failures will dictate an extended test period before

handover. Here, we assume that the build and test will take two months and

require total expenditure (including staff time) of £100,000.

After the handover, a further period is required for acceptance testing and

a pilot field trial, and for preparing for the full distribution. We assume this

process takes a further two months and costs a total of £150,000.

Distribution then begins and it too will take time, dictated partly by the

availability of staff to visit the sites and partly by the supply of freshly pro-

grammed memory boards. We will assume that in total, it will be possible to

upgrade 200 sites each month at a cost of £100 each.

These values are entered on the general parameters screen, as shown in

Figure 8.1.

8.2.2 The Change Requests

These are the requests:

1. Data Change Speedup: Improves the interface through which engineers

enter configuration changes to the database. Will savie about 6 minutes per

installation per month. Cost estimate to fix: £1,200 + 1 person-month.

106

1	 General Parameters	 1	 l	 Baseline Plan	 1	 11741

inoli
Installations Initial

Month Staff New Retired 3500
1 0. 5 50 o 3550
2 0. 5 60 o 3600
3 O. 5 50 o 3650
4 0. 6 60 o 3700
5 O. 6 50 o 3750
6 0. 5 60 o MOO
7 0. 5 60 o 3850
8 O. 5 50 o 3900
9 O. 6 60 o 3950

10 0. 5 60 o 9000

Base Build Cost I 00000	 150000 Acceotance Cost
Base Build Time 2	 2 Acceptance Time

Staff Cost (C/month) 5000 1 00 UnIt Upgrade Cost
200 Distribution Rote

Figure 8.1: General Parameters Entered in the Model

2. English Commands: Some of the software was reused from a module

written by a foreign software house, and engineers see some messages

in that language. It's always obvious from the context what is meant,

so in fact this one comes under the category of cosmetic change and no

measurable benefit can be identified. Cost estimate to fix: £1,500 + 0.5

person-month.

3. Customer Lockout: Occasionally an individual customer's line will be-

come locked up. Each time it happens, the customer complains and an

engineer must be sent to reset the line. On average, each installation

is suffering one of these failures every 20 months. Cost estimate to fix:

£1,050 + 0.5 person-months.

4. Dropped Calls: Calls in progress are occasionally dropped because of

this software error. It's not frequent: in a group of 25 installations, there

will be about one such incident per month. Individual customers are

107

affected so rarely that no complaints have been recorded. Cost estimate

to fix: £100 -I- 1 person-month.

5. Transmission Loss: This one subjects a small proportion of calls to

sudden transmission loss: it happens on average once a month per in-

stallation. On 10% of these occasions, an engineer has to be sent out to

investigate the problem. Cost estimate to fix: £5,000 + 2 person-months.

6. Database Auto Load: New installations have their initial configurations

keyed in and checked by hand, which takes 6 hours. This enhancement

would automate much of the process, saving 5 hours on each new instal-

lation. Cost estimate to fix: £3,000 + 1 person-month.

7. One-Step Install: Every new installation must be revisited after a few

days to check calibration of power supply etc. This enhancement allows

the checks to be made remotely, saving the expense of the extra visit.

Cost estimate: .C1,500 + 1 person-month.

8. Bell Tinkle: The system performs regular automatic tests on customers'

lines, but unfortunately this sometimes causes the phenomenon of "bell

tinkle." This modification redesigns the test procedure to eliminate the

problem. At the moment, each installation generates one customer com-

plaint roughly every 5 months. Cost estimate to fix: £1,500 -I- 3 person-

months.

The data for each request is entered into its own screen. The example used in

Chapter 7 (Figure 7.4) in fact shows the data for request number 5: Transmis-

108

Recalculate)

Summary Screen 	1
	

Baseline Plan

Figure 8.2: Summary screen showing profit against release date

sion Loss.

8.2.3 Baseline Plan Results

With the above data entered, the model is ready to run and Figure 8.2 shows the

summary screen after calculations are complete. The peak profit of .C4,012,975

occurs for a release date at the end of month 15, although there is another

peak almost as high two months earlier. For the details, it is then necessary to

examine the scenario graphs. Figure 8.3 shows the scenario for our best release

after month 15, with on the right the list of requests for change. The lines of

asterisks separate those that should be included (above) from those that should

not (below).

All the changes except one ("English Commands") have positive priority, so

there would have been seven changes included in the release if resources had

allowed. As expected, the four that are included are the ones with the highest

calculated priorities.

109

Scenario Dist)lati
	

	1
	

Baseline Plan
	

	1

Steallotions
4700

suef
0.5

Priority Description
1920950 Customer Lockout
963000 Transmission Loss
374933 Bell Tinkle
342000 Data Change Speedup

see	 se.
se.

37000 Database Auto LoGS
29720 Dropped Calls
16000 One-Step Install
-111030 English Commands

z1;
Release Benefit

Release Cost
Release Value

Return (X)

Month
iC:3 15 *

Distribution Completion Time:
after month 39

60

£4,744,225
E731,250

E4,012,975
549 (Show RFCs)

Figure 8.3: Scenario for release after month 15

If we wish to examine the slightly lower peak of profit for a release after

month 13, we can look at that scenario (Figure 8.4). The profit figure is now

£3,884,138 — a little over 3% below the 15-month figure. Only three changes

can now be accommodated given the available resource, but the loss of benefit

from "Data Change Speedup" is partially compensated by the reduced effort in

the release, and by the increased benefit from the other changes through their

earlier introduction into the field. The increased benefits generally from the ear-

lier release have raised all the priority figures, except for "English Commands"

where no benefit at all had been identified.

These two scenarios also illustrate a sensitivity to the criterion used for

deciding which is to be the best release. Our decision to go for the highest

profit, as we have seen, makes month 15 the best. If, however, the desire had

been to maximise the return on investment we would have preferred to release

after month 13, which in fact yields the highest return at 551%.

By examining each of the scenarios, a full picture may be built up of the

110

installatlens
4703

lituff
0.5

Month

Scenario Disolau Baseline Plan 1 IC141
1=7.
ravi

Priority Description
1901275 Customer Lockout
901230 Transmission Lou
600333 Bell Tinkle

ees
see	 oee

357300 Data Change S4meclup
47000 Database Flute Load
31250 Dropped Calls
21000 One-Step Install
-8000 English Commends

-V

Release Benefit
Release Cost

Release Value
Return (%)

<:-.) 13 C:).

Distribution Completion Time:
Mir month 36

£4,589,168
£705,050

£3,664,138
551 (Show RFCs)

Figure 8.4: Scenario for release after month 13

implications of all the different possible release dates. On the model the natural

way to do this is to use the arrow buttons to move back and forth, but here we

will extract the principal items and show them as Table 8.1.

Referring to the table, we see that change 3 ("Customer Lockout") is always

chosen for inclusion — a reassuring agreement with intuition. Change 1 ("Data

Change Speedup") drops in and out of favour as the release date changes, be-

cause it gives way to number 5 ("Transmission Loss") and then to number 8

("Bell Tinkle") when there is enough effort available to make these possible but

not then enough still to include it.

Change 6 ("Database Auto Load") is of value only for new installations, of

which there are no more after month 24. For releases after month 11 or 12,

enough new installations remain to be done that it gets a high enough priority

for inclusion; after that it remains out of the rankings until month 19, when the

value (and hence priority) is much reduced but the resource is available to take

in lower priority changes. After month 22 there are so few new installations yet

111

Release

after

month

Profit

.e

Return

%

Changes included

1

DCS

2

EC

3

CL

4

DC

5

TL

6

DAL

7

OSI

8

BT

3 521,450 82 •

4 502,025 79 •

5 901,238 141 • •

6 873,688 137 • •

7 2,462,275 368 • •

8 2,402,800 359 • •

9 2,731,262 405 • • •

10 2,662,262 395 • • •

11 2,639,750 376 • • • •

12 2,564,025 365 • • • •

13 3,884,138 551 • • •

14 3,778,088 536 • • •

15 4,012,975 549 • • • •

16 3,895,800 533 • • • •

17 3,805,252 517 • • • • •

18 3,684,472 500 • • • • •

19 3,586,770 469 • • • • • •

20 3,458,245 452 • • • • • •

21 3,329,348 432 • • • • • • •

22 3,197,078 418 • • • • • •

23 3,080,375 397 • • • • •

24 2,951,360 380 • • • • •

25 2,822,345 364 • • • • •

26 2,693,330 347 • • • • •

Table 8.1: Implications of various release dates (baseline plan)

112

General Parameters	 More Staff Time Via

Irafri
Installations Initial

Month Staff New Retired 3500
1 1 50 0 3550
2 1 50 0 3600
3 1 50 0 3660
4 1 50 0 3700
5 60 3760
6 1 60 0 3800
7 60 0 3860
a 1 60 0 3900

1 50 0 3950
10 50 4000

ease Build Cost 100000 150000 Acceotance Cost
Base Build Time 2 2 Acceptance Time
Cost (C/month), 5000,ataff 100 Unit Upgrade Cost

200 Distribution Rate

Figure 8.5: Increasing the available staff time

to be done that the benefit does not outweigh the cost, and so it drops again

out of the list. Change 7 ("One-Step Install") undergoes a similar effect but

from a lower base priority; it just makes it into the list after month 21, but after

that it descends once more into oblivion.

8.3 More Staff Time

Clearly, the availability of the maintainer's time is putting severe limitations

on the ability to deliver a timely release. Is it worth the extra salary cost of

making our maintainer full time?

To examine the effect of taking this action, it is necessary only to alter the

"Resource" column in the general parameters screen to show a constant value

of 1 (see Figure 8.5).

Rerunning the model then leads to the new summary screen thown in Fig-

ure 8.6. The peak profit is now £4,689,262.5, which is an improvement of

113

Figure 8.6: Summary with increased staff time

.C676,287.5 over the baseline plan — nearly 17%. Moreover, the best release

has been brought forward by six months, occurring now after month 9.

To see which changes are now included in the best release, we refer to the

scenario graph for month 9, which is given in Figure 8.7. In what might be

described as something of an anticlimax, we see that the same four are included

as were in the baseline plan, so the extra profit has all come from the increased

benefit of moving the release date forward.

The picture also reveals that not all the available resource has been used,

as shown by the dashed vertical line within the resource histogram. In fact the

spare resource shown there is half a person-month, so the release could have

included another change of that effort or less. However, the only candidate is

"English Commands" and its negative priority has precluded it.

It may be observed that the appropriate response in fact would be to bring
1

the release forward by another two weeks, since the period during which the

resource is spare is not used for any other purpose. That would be done in

114

Priority DsscriptIon
2065125 Witmer Lockout
979750 Transoission Loss
652667 Sell Tinkle
366700 Data Chong* Spoo:1n49

.44

57000 Database to Load
34390 Dropped Calls
31000 One-Step Install
-0000 English Commands

Scenario Displag More Staff Time Kral
Ir

0	 Month
	

60

<3 9 4>
Distribution Completion Time:
oiler month 31

£5,360,512
£691,250

£4,689,262
678 (Show RFCs)

Release Benefit
Release Cost

Release Value
Return (X)

Figure 8.7: More staff time: Release after month 9

practice, but the model does not suggest it because one month is its minimum

time resolution.

The return on investment for this release is given in Figure 8.7 as 678%, so

by this measure also it is an improvement on the original.

8.4 Review of Testing

As an alternative to the resource increase, we might wish to explore the effect

of spending money to improve the test process. The two months required for

the build and system test, if it could be reduced, would certainly bring in more

benefit through earlier release.

We will suppose that a specialised team can be hired for the system test.

Their efforts will reduce the build and test time from the present 2 months to

one, but the cost of their service will be £125,000. Should they be used?

In order to investigate this one, we return to the general parameters screen

115

Figure 8.8: Effect of system test team

and return it to its baseline state as in Figure 8.1. Then, we add the £125,000

to the release preparation cost and reduce the release preparation time to 1.

Rerunning the model now gives Figure 8.8 as the summary screen. The peak

profit is now a month earlier, as expected, but the actual value of the profit is

£4,001,987.5 — £10,987.5 less than the baseline figure. Checking the scenario

screen (Figure 8.9) shows that the same four changes are included.

The conclusion must be that the use of the test team is not justified. Despite

the possibility of the earlier release, it is better to stick with the baseline plan

— unless, of course, the cost of the test team can be negotiated down to an

acceptable figure.

The decision in this case has been very marginal: it hinges on a difference of

only 0.27% in the release value. If we had not made the simplifying assumption

of constant value of money but instead assumed a future discount rate of 3%

per annum or more, the test team would have been shown to be justified.

116

Priority °e'er lotion
1857175 Custoose Lockout
$00250 Tronssisslon Loss
586333 Bell Tinkle
348900 Data Change Speeckes

ree	 •n••
P.*	 *OP

42000 Database to Load
30410 Dropped Calls
185020na-St40 install
-woo English Corands

Scenario Displati Review of Testing ILTI41

Release Benefit £4,838,238
Release Cost £836250

Release Value £4,001,986
Return (X) 479

Month
<3 14

Distribution Completion Time:
after month 37

60

(Show RFC*)

Figure 8.9: Test team: Release after month 14

8.5 System Replacement Plan

Under the assumptions of the baseline plan, no installations of the system are

taken out of service during the five-year planning horizon. We now consider

what would be the effect of an advance in technology, such that a replacement

system renders ours obsolete within the five-year period. We will not be con-

cerned with the economics of the new system: our need is simply to adjust the

maintenance plan for the old one, if that should prove necessary.

We will assume that the new system will begin to enter service in two years

time, so the installations of our system will be removed progressively from then.

Starting in month 24, systems will be replaced at the rate of 125 units per month;

from month 36 this figure will increase to 200. At these rates, all installations

have been replaced by the end of month 50.

Is it still worth issuing another release of the software, or should we call it

quits now?

117

Figure 8.10: Effect of system replacement plan

Working again from the baseline figures, we enter the new data into the

model by setting the new values into the retired installations field of the gen-

eral parameters screen. Again we rerun the model, and we examine the new

summary screen (Figure 8.10).

The effect of the new technology is clearly seen in the new peak profit figure,

which is now down to .£1,465,450. The best release is after month 13, two

months earlier than the baseline plan. The scenario display (Figure 8.11) shows

that the new return on investment is 242%, so although a new release is justified

in theory by the still-positive profit it has become more likely that another

project may show a better return on the expenditure.

Figure 8.11 also shows that the four changes that have always been included

so far are now reduced to three. Change 1 ("Data Change Speedup") still has

a relatively high priority, but on balance it has proved better to get the release

out early than to wait while that particular change is implemented.

118

1 System ReplacementScenario Display 1

Priority Descriptica
853900 Canto.... Lockout
402500 frame I ss ion Loss
2057833 Dell Tinkle

4.40

l57800 Data Change Speedup
47000 Database Auto Load
21E03 One-Stag instal
MOO Dropped Calls
-8000 English Comeands

Instattaticas
44350

Staff
0.5

0

Release Benefit £2,070,500
Release Cost £605,050

Release Value £1,465,450
Return (%) 242

Month
<3 13 ff>

DletrIbution Completion Time:
after month 31

(Show RFCs)

Figure 8.11: New technology: Release after month 13

8.6 New Legislation

So far, none of the situations we have examined has involved a mandatory

change to the software. We will now rectify that.

New EC legislation is being enacted. Three years from now, it will become

illegal for any company to ask its workforce to use software that does not com-

municate with them in their own native language.

Suddenly, the English Commands change takes on a whole new importance.

Will this affect the baseline plan, and if so, how?

Returning to the baseline data, we set the "Force Selection" checkbox in the

RFC screen for English Commands, and rerun the model. The new summary

screen appears as Figure 8.12.

At first sight, the effect is not great. The best release is delayed by a month,

reflecting the need to allow time for the design of the change, but it includes the

same four changes from the baseline release plus the now mandatory English

119

Figure 8.12: The effect of legislation

Commands. The scenario graph is shown in Figure 8.13. It is very similar to

Figure 8.3 but English Commands has moved up to the top of the list.

Unfortunately though, the best release does not comply fully with the legis-

lation because the new release will not have been installed at all sites within the

required three years. Figure 8.13 shows this scenario, which misses the deadline

by four months.

We therefore test earlier scenarios until we find one that gets the distribution

finished in time, using the slide-show procedure described on page 98. That

turns out to be a release after month 13 (Figure 8.14). Any release before that

will also meet the legislative deadline, so we are then prepared to accept the

best release at or before month 13. It turns out that there is a better one: a

release after month 10, which turns in a profit of £2,658,262 (Figure 8.15).

This is the one that should be accepted.

120

Priority Description
FORCE English Commands

1775E100 Customer Lockout
941500 Transmission Loss
360500 Bell Tinkle
333400 Data CO.ong Speedo

040	 000

000	 400

32003 Database Auto Load
26960 Dropped Calls
13300 One-Step install

Priori ty Description
FORCE	 English Comocnsis

1901275 Customer Lockout
901250 Transmission Loss
337300 Data Change Speedup
47000 Dotobas• to Load

mem	 ees
emm	 mem

600333 Bell Tinkle
31250 Dropped Calls
21000 One-Step install

•o,

Scenario Display New Legislation

Release Benefit
Release Cost

Release Value
Return (R)

£4,627,050
£735,250

C3,691)300
529

<:-.1 16 C>

Distribution Completion Time:
after math 40

(Show RICs)

Figure 8.13: After legislation: The first estimate

Scenario Display New Legislation urn"
Min

Release Benefit
Release Cost

Release Value
Return (R)

£3,190,166
£706,750

£2,483,438
351

<;1 13 C>

Distribution Completion Time:
after month 36	

Show RFC,)

Figiire 8.14: After legislation: Just in time

121

Priority Description
MACE ENO Ish Commands
2024125 Customer Lockout
959750 Transmission Loss
360703 Data Chong@ Speedup

MA,

*06	 440

639333 Dell Tinkle
02000 Database Auto Lind
33590 Dropped Cal Is
20300 One-Step Install

Scenario Display New Legislation

0

Release Benefit
Release Cost

Release Value
Return (I)

Month

<3 10 *

Distribution Completion Time:
oiler month 32

£3,337,012
£678,750

£2,658,262
392 (Show RFCS)

Installations
4700

Staff
0.3

Figure 8.15: After legislation: The best solution

8.7 Distribution Review

For a typical release situation, more time is spent upgrading the installations

in the field than in preparing the changes. This is a consequence of our initial

assumption of an embedded system, but it would be expected in practice that

distribution arrangements would be carefully reviewed to try and improve the

system.

For this example, we will assume that such a review has been carried out.

It would indeed be possible to speed things up, but only at a price.

The new scheme would mean assigning extra staff to the distribution task,

and purchasing extra spare memory boards. As a result, the distribution rate

can be doubled from the baseline figure of 200 installations per month to 400.

However, there will be an initial outlay of .C50,000 for equipment and training,

and each upgrade will cost an additional £50.

These figures all affect the general parameters screen, leaving it as shown in

122

General Parameters 	1
	

Distribution Review

Installations initial
Month Staff New Retired 3500

1 0.6 60 0 3560
2 0.6 50 0 3600
3 0. 5 50 0 3650
4 O. 5 50 0 3700

5 0.5 60 0 375O ii

6 0.6 60 0 3600
7 0.5 50 0 3850
El 0.5 60 0 3900

9 0. 6 50 0 3950
10 0.5 50 o 4000

Base Build Cost 100000 200000 Acceptance Cost
Base Build Time 2 2 ACceDtance Time

5tft CostiLimonth) 5000 150 Unit Upgrade Cost
400 Distribution Rate

•1711
Irmo.

Figure 8.16: Distribution Review: General parameters

Figure 8.16. Rerunning the model with these figures then gives the summary

screen as in Figure 8.17, from which we see that the new peak has a profit figure

of £4,132,650. The scenario display for that peak, and the list of changes, are

shown in Figure 8.18.

Figure 8.18 clearly shows the effect of the new distribution rate: the release

is fully installed in the field at the end of month 28, as against month 38 in

the baseline. The changes, and the release date itself, remain the same as in

the baseline so no consequent planning changes are needed there. However, the

profit figure of £4,132,650 is better by £119,675. Expensive though it is, the

new distribution system is worthwhile.

8.8 Summary of Results

We have seen in the six scenarios how changes in the overall situation can affect

the plans for the release of a new version of the software product, and the profit

123

Summani Screen Distribution Review ICTI41

gram

(Recalculate)

Scenario Displaq Distribution Review

hsta/latkas
4700

Staff
0.5

Release Benefit
Release Cost

Release Value
Return (X)

£5,133,900
£1,001,250
£4,132,650

413

Month

<3 is c>
Distribution Completion Tin*:
otter month 28

(Show RFCs)

Priori ty Description
1071100 Custmer Lockout
934500 Tronseission Loss
622500 Sell Tinkle
370600 Data Change Speedup

.10
37000 Database Auto Load
32500 Dropped Coils
16000 One-Step Install
-6000 English Coreards

4-5

Figure 8.17: Distribution Review: Summary screen

Figure 8.18: Distribution Review: Best scenario at month 15

124

•
More Staff Time

Distribution Review

Review of Testing	
t

i	 Baseline
•

3 -
Release Value m

2 -

1 -

•
New Legislation

•
System Replacement Plan

0	 I
8	 6

-I
10 1 '1 12 13	 14	 15	 16	 17	 18	 19 12 0

Release Time (Month)

Figure 8.19: Summary of Results.

to be made from that release.

Figure 8.19 shows the six outcomes as a scatter plot of release value against

optimum release time. Comparing each point with the baseline, we can see that

the externally imposed events New Legislation and System Replacement Plan

had the most dramatic effect on the release value, with the system replacement

plan cutting profits by almost two thirds.

The three situations that could be said to be under the organisation's control,

however, were more beneficial. The distribution review generated a small extra

profit, while the review of testing brought the release time forward. In this case

the profit was slightly reduced, though the effect is not apparent on the scale of

the graph. We recall, too, that if the future value of money had been discounted

in the calculations, then any annual discount rate of 3% or more would have

justified the situation.

4-

125

The greatest effect of all, however, is in the allocation of more staff time

to the project. It brought the release time forward by a full six months, and

yielded a useful increase in profit into the bargain. Discounting of the future

value of money would further have increased the value of this situation.

8.9 Chapter Summary

This chapter has shown the use of the model based on hypothetical sample

data, which however is based on data from a real project to which the model

was applied.

The use of the model to provide a plan for a single situation was first demon-

strated. It showed how the priority calculation would distinguish (by negative

or positive priority) between those changes that could with advantage be in-

cluded, but it further showed that positive priority is not in itself enough to

gain inclusion in a release. The maintenance effort means that a change must

also carry enough benefit to outweigh the release delay while it is designed, and

many will not meet this condition.

The further use of the model to explore variations on the baseline situation

was then demonstrated. The provision of extra resource for change design pro-

vided the greatest advantage, which accords well at least with this author's own

experience.

1

126

Chapter 9

Conclusions

9.1 Summary of Thesis

The maintenance of computer software is a process which in an average organ-

isation will consume more than half of the total software budget. Demand (in

the form of change requests) normally outstrips supply (in the form of software

changes in new releases), and prioritisation is an important component of the

process. It is normal practice for organisations to allocate fixed budgets to main-

tenance activities, within which the target is to implement as many changes as

possible from those with the highest priorities.

Existing models of the maintenance process concentrate on actions and en-

tities. The thesis has presented a larger model, where the actions and entities

are recognised at the lower levels but higher levels are increasingly concerned
1

with costs, benefits and investment returns.

The thesis is concerned with the planning of future releases of software, and

127

the presented model is used in the derivation of calculations to yield financial

implications of different plans. These calculations have been implemented as a

computer program.

The program in turn is given a set of sample data to work on, and used

to establish a baseline plan for a new release. Variations in the situation are

applied, and the resulting effects on the plans are noted.

9.2 Results

Assessing the maintenance activity on an investment basis is significantly more

difficult than for many other decisions, largely because many individual ac-

tivities must be taken into account. Each of these has its own cost/benefit

attributes, and the calculation of overall plans is repetitive and tedious: in fact,

impractical without machine assistance.

The model has been applied primarily to one project within BT, involving an

embedded system installed in large numbers within the network. The original

figures have not been used in this thesis for reasons of commercial confidentiality,

but sample figures have been substituted that allow similar conclusions to be

drawn.

Although the model lacks some features that a practical implementation

would require, those features would be feasible in a full implementation.

•

128

9.3 Statement of Success

Three criteria for success were stated at the start of this thesis.

1. Describe the maintenance process with the aid of a quanti-

fied model that provides financial analysis of the consequences of

proposed maintenance actions.

We have developed a 7-level model of the maintenance process, which is de-

scribed in Chapter 4. Aspects of the model which are relevant to release planning

are formalised in Chapter 5. The model predicts the outcome of maintenance

situations, in financial terms and with timescales. The model goes beyond the

immediate needs of the thesis, and is a suitable basis for further developments.

The comparison of alternate investment values will need to be tailored for the

organisation that uses the model, and in Section 5.12 we have indicated how

this would be done.

2. Show that the model aids decision making both within a

maintenance project and in the comparison of investment values

between projects.

The model aids decision-making, as introduced in Chapter 6 and as demon-

strated by example in Chapter 8. The examples in Chapter 8 illustrate the

comparison of alternative situations by reference to their investment returns. In-

vestment returns are absolute financial values, which may be compared amongst

different projects including non-software ones. The presentation of information

129

from the model may be improved after further study, and in Section 9.4.2 we

indicate the possibility of future work in this area.

3. Show that the model can be implemented on a computer and

that the implementation has the potential of practical commercial

use.

The model has been implemented in a computer program, and while the current

implementation is more suitable as a demonstration than for direct commercial

use, we have indicated in Section 7.4 the changes that would be required.

9.4 Further Work

9.4.1 Research

Further research work based on this thesis can be as follows:

1. The model works on the basis of a release at some future time, yet it

makes no allowance for the arrival of further change requests during that

time. Data on past arrivals could be collected and extrapolated on any

particular project, but there remains the possibility that more general

studies could reveal the existence of typical patterns. Knowledge of these

could give the model a measure of independence from that form of data

collection.

2. The nature of the model makes it inevitable that its predictions should

be subject to sudden change in response to gradual changes in values of

130

input parameters. This aspect of its behaviour would benefit from further

study, which would be aimed at predicting the bounds of the magnitudes

of the discontinuities.

3. The sample situations tested in Chapter 8 include examples of predicting

the effects of process improvements. This kind of use of the model can

be investigated further. For example, if historical information about past

change requests is available, it would be possible to drive the model by

assuming future requests would follow a similar pattern. This would make

it possible to provide longer-term predictions about the effects of process

change.

4. Knowledge of any typical statistical distributions in the inputs to the

model may improve its predictive powers and its general application. If

distributions can be identified, then further theoretical work becomes a

possibility.

9.4.2 Exploitation

Further work to aid the exploitation of the results of this thesis can be as follows:

1. The model allows for a variety of calculations of return on investment,

and a calculation would need to be specified for the most favoured value.

This would depend on the normal practices of the organisation using the

model.

131

2. The model has been evaluated by exposing it to members of project teams

and gaining their approval in principle. It has not been used over a pe-

riod of time, and an extended trial would be a necessary part of further

evaluation.

3. The model has so far been exposed to projects which have dealt with

embedded systems. It needs to be tested in other environments such as

with data processing systems where (for example) the distribution costs

and times may prove relatively insignificant.

4. The model has been exposed only to planning for small software changes,

in accordance with the usual software maintenance definition. There ap-

pears to be no reason why it could not deal with the planning of large

changes such as major enhancements. An analysis of sample business

cases would test this suggestion, and could increase the scope for exploita-

tion. It would also suggest that the definition of maintenance should be

re-examined, since the distinction between small and large changes is at

present so large a component of it.

5. It is likely that the presentation of information from the model could be

improved. For example, the presentation in Figure 8.19 is not generated

automatically. It could be.

9.5 Conclusions

In conclusion, the following main points have been expanded in this thesis:

132

1. Software maintenance, unlike development, is commonly regarded as a

regrettable but necessary expense. It has been demonstrated that main-

tenance can be treated as an investment activity, in which benefits are

weighed against costs and financial returns calculated.

2. This information can be used to guide maintenance planning decisions.

3. The necessary calculations can be embodied in a computer program, and

it is practicable to use such a program to explore the consequences of

alternative scenarios.

1

133

Bibliography

[B075] C. L. Brantley and Y. R. Osajima. Continuing development of cen-

trally developed and maintained software systems. IEEE Computer

Society Proceedings, (45):285-288, 1975.

[Boe76] Barry W. Boehm. Software engineering. IEEE Trans. Comput.,

25(12):1226-1241, December 1976.

[Boe86] B. W. Boehm. A spiral model of software development and enhance-

ment. ACM SIGSOFT Software Engineering Notes, 11(4):14-24,

1986.

[Boe88]	 B. W. Boehm. A spiral model of software development and enhance-

ment. IEEE Computer, 21(5), May 1988.

[Bro75]	 F. P Brooks, Jr. The Mythical Man-Month. Addison-Wesley, Read-

ing, Mass., 1975.

[Can72] R. G. Canning. That maintenance iceberg. EDP Analyzer, 10(10):1—

14, October 1972.

134

[CB86] James S. Collofello and Stephen Bortman. An analysis of the techni-

cal information necessary to perform effective software maintenance.

In Proc. 5th Annual Phoenix Conference on Computers and Com-

munications, pages 420-424, March 1986.

[CC90] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and

design recovery: A taxonomy. IEEE Software, 7(1):13-17, January

1990.

[CC92] Larry D. Cousin and James S. Collofello. A task-based approach

to improving the software maintenance process. In Proc. 8th IEEE

Conf. Software Maintenance, pages 118-126, November 1992.

[Cha86]	 Ned Chapin. Supervisory attitudes toward software maintenance. In

Proc. AFIPS National Computer Conference, pages 61-68, 1986.

[C1e91]	 E. Clemons. Evaluation of strategic investments in information tech-

nology. CA CM, 34(422-36, January 1991.

[Cra62]	 W. J. Craig, editor. The Complete Works of William Shakespeare.

Oxford University Press, 1962.

[Dat73]	 Program maintenance: User's view. Data Processing, 7:1-4, 1973.

[DBSB91] Premkumar Devanbu, Ronald J. Brachman, Peter G. Selfridge, and

Bruce W. Ballard. LaSSIE: A knowledge-based software information

system. CACM, 34(5):34-49, May 1991.

135

[Dre92] Daniel W. Drew. Tailoring the Software Engineering Institute's (SET)

Capability Maturity Model (CMM) to a software sustaining engineer-

ing organisation. In Proc. 8th IEEE Conf. Software Maintenance,

pages 137-144, November 1992.

[DSA71] A. E. Ditri, J. C. Shaw, and W. Atkins. Managing the EDP Function.

McGraw—Hill, New York, 1971.

[E1s76]	 James L. Elshoff. An analysis of some commercial PL/1 programs.

IEEE Trans. SE, 2(2):113-120, June 1976.

[EM82] James L. Elshoff and Michael Marcotty. Improving computer pro-

gram readability to aid modification. CA CM, 25(8):512-521, August

1982.

[FH791 R. K. Fjeldstad and W. T. Hamlen. Application program mainte-

nance study: Report to our respondents. Technical report, GUIDE

48, Philadelphia, PA, 1979.

[F1e83] James C. Fletcher. Report of the study on eliminating the threat

posed by nuclear ballistic missiles. Technical report, SDI Organisa-

tion, 1983.

[FM87] John R. Foster and Malcolm Munro. A documentation method based

on cross-referencing. In Proc. 3rd IEEE Conf. Software Mainte-

nance, Austin, Texas, September 1987.

136

[Fos89] J. R. Foster. Priority control in software maintenance. In Proc. 7th

Int. Conf. Software Engineering for Telecommunication Switching

Systems, Bournemouth, UK, pages 163-167, July 1989.

[Fos91]	 J. R. Foster. Program lifetime: A vital statistic for maintenance. In

Proc. 7th IEEE Conf. Software Maintenance, October 1991.

[Fro85]	 David Frost. Software maintenance and modifiability. In Proc. Conf.

Computers and Communications, pages 489-494, 1985.

[Gre84]	 Lee L. Gremillion. Determinants of program repair maintenance

requirements. CA CM, 27(0826-832, August 1984.

[Gui83]	 Tor Guimaraes. Managing application program maintenance expen-

ditures. CA CM, 26(10:739-746, October 1983.

[11B92] D. S. Hinley and Keith H. Bennett. Developing a model to manage

the software maintenance process. In Proc. 8th IEEE Conf. Software

Maintenance, pages 174-182, November 1992.

[HQ92] Del-Raj Harjani and Jean-Pierre Queille. A process model for the

maintenance of large space system software. In Proc. 8th IEEE Conf.

Software Maintenance, pages 127-136, November 1992.

[11um89] Watts S. Humphrey. Managing the Software Process. Addison-

Wesley, 1989.

[IEE93] IEEE Computer Society. IEEE Standard for Software Maintenance

(IEEE Std 1219-1993), 1993.

137

[J. 73]	 J. Hoskyns and Co. Implications of using modular programming.

Hoskyns System Research, London, 1973. Guide no. 1.

[Jon77]	 T. Capers Jones. Program quality and programmer productivity.

Technical Report TR 02.764, IBM, 1977.

[Jon81] Robert R. Jones. Software continuation engineering system con-

cept. In Proc. Nat. Conf. on Software Technology and Management,

Alexandria, VA, October 1981.

[Ke192] Ted W. Keller. The importance of process improvement in software

maintenance (keynote address). In Proc. 8th IEEE Conf. Software

Maintenance, 1992.

[Ken90] Robert C. Kendall. More management perspectives on pro-

grams, programming and productivity. Software Maintenance News,

8(5):22, May 1990.

[Kha75] Zafar Khan. How to tackle the systems maintenance dilemma. Cana-

dian Datasystems, pages 30-32, March 1975.

[Liu76]	 C. C. Liu. A look at software maintenance. Datamation, 22(11):51—

55, November 1976.

[LMR91] Moises Lejter, Scott Meyers, and Steven P. Reiss. Support for main-

taining object-oriented programs. In Proc. 7th IEEE Conf. Software

Maintenance, pages 171-178, October 1991.

138

[LS80]	 Bennet P. Lientz and E. Burton Swanson. Software Maintenance

Management. Addison-Wesley, Reading, MA, 1980.

[LST78] Bennet P. Lientz, E. Burton Swanson, and G. E. Tompkins. Charac-

teristics of application software maintenance. CA CM, 21(6):466-471,

June 1978.

[McC81] Carma L. McClure. Managing Software Development and Mainte-

nance. Van Nostrand Reinhold Co., New York, NY, 1981.

[McD92] Jim McDonald. Ensuring the benefits of process improvement. In

Proc. Sixth European Software Maintenance Workshop, Durham,

UK, September 1992.

[Mi175]	 H. D. Mills. How to write correct programs and know it. ACM

SIGPLAN Notices, 10:363-370, June 1975.

[Mor88] Robert Moreton. Analysis and results from a maintenance survey.

In Proc. Second Software Maintenance Workshop, Durham, UK,

September 1988.

[MW79] J. H. Morrissey and L. S.-Y. Wu. Software engineering: An economic

perspective. In Proc. 4th Int. Con!. Software Eng., Munich, West

Germany, 1979, pages 412-422, September 1979.

[Nau76] Report on the NATO Software Engineering Conference, Garmisch,

Germany, 1968. In Peter Naur and Brian Randall, editors, Software

Engineering Concepts and Techniques. Petrocelli/Charter, 1976.

139

[NP90] John T. Nosek and Prashant Palvia. Software maintenance manage-

ment: Changes in the last decade. Journal of Software Maintenance:

Research and Practice, 2(3):157-174, September 1990.

[Rig69]	 R. Riggs. Computer system maintenance. Datamation, 15:227-235,

November 1969.

[R1J89] H. Dieter Rombach and Bradford T. Ulery. Establishing a measure-

ment based maintenance improvement program: Lessons learned in

the SEL. In Proc. 5th IEEE Conf. Software Maintenance, pages

50-57, October 1989.

[Sha77] W. K. Sharpley. Software maintenance planning for embedded com-

puter systems. In Proc. COMPSAC '77, pages 520-526, November

1977.

[Sta84]	 Thomas A. Standish. An essay on software reuse. IEEE Trans. SE,

10(5):494-497, September 1984.

[Swa79]	 E. Burton Swanson. On the user-requisite variety of computer ap-

plication software. IEEE Proc. Reliability, 28:221-226, August 1979.

[Ti187] Mike Tilley. Debrief report on the National Computer-Aided Soft-

ware Engineering Conference October 1987. Technical memo, British

Telecom, October 1987.

140

[TT921 Tetsuo Tamai and Yohsuke Torimitsu. Software lifetime and its evo-

lution process over generations. In Proc. 8th IEEE Conf. Software

Maintenance, November 1992.

[vZ93]	 H. J. van Zuylen, editor. The REDO Compendium. John Wiley St

Sons, 1993.

[WDK93] R. E. Whiting, J. Davies, and M. Knul. Investment appraisal for

IT systems. British Telecom Technical Journal, 11(2):193-211, April

1993.

[W1191] Norman Wilde and Ross Huitt. Maintenance support for object-

oriented programs. In Proc. 7th IEEE Conf. Software Maintenance,

pages 162-170, October 1991.

[Ze178j	 M. V. Zelkowitz. Perspectives on software engineering. ACM Com-

puting Surveys, 10(2):197-216, June 1978.

1

141

Index of Model Terms

acceptance cost, 47, 77, 78, 81

acceptance time, 47, 65, 77, 82, 97

available change effort, 48, 76, 77,

86, 97

base build cost, 47, 59, 77, 78, 81

base build time, 47, 59, 76, 77, 81,

97

change delay, 47, 51, 77,

change effort, 47, 54, 55,

102

71, 73, 77,

82

change list, 48, 75-78, 85, 86

customer charge, 51, 59

description, 51, 52

distribution cost, 48, 77, 78

distribution rate, 47, 65, 81, 97

distribution start time, 48, 64, 65,

69, 70, 78, 97

event times, 51, 53

external change cost, 47, 51,

71, 76, 82

54, 55,

frequency base, 47, 51, 69-71, 101,

102

frequency base count, 48, 70,

frequency multiplier, 48, 51,

71

71, 89

gross change benefit, 48, 51, 71, 72

historic cost, 51-53, 56

identity, 51, 59

importance, 51-53, 60

incident, 62

incident frequency, 47, 51, 68, 70, 71,

101

incident type, 51, 102

incident type count, 48, 68

incident value, 47, 68, 71, 101

initial installations, 47, 63, 64, 99

installation profile, 64, 70

142

installations, 48, 64-66, 69, 77, 78,

89, 97, 99

net change benefit, 48, 51, 71-73, 75,

78, 86

new installations, 47, 64, 69, 99

optimum release time, 48, 78, 79, 85,

86, 95, 98, 125

priority, 48, 51-54, 56, 72-75, 77

release benefit, 48, 78, 99

release completion time, 48, 65, 66,

85

release cost, 48, 75, 77, 78, 99

release time, 48, 64, 65, 71, 77, 78,

86, 94, 96, 98, 125, 126

release value, 48, 74, 75, 78, 79, 82,

85, 86, 94, 95, 99, 116, 125

retired installations, 47, 64-66, 99,

118

return on investment, 99

staff, 47, 56, 57, 76, 86, 9f, 99

staff cost, 47, 54, 55, 57, 71, 100

staff profile, 57, 76

time max, 47, 62, 63, 69, 71, 79, 99

time now, 47, 63, 64, 76, 79

total change cost, 48, 51, 55, 56, 71,

72

unit upgrade cost, 47, 77, 78

143

	DX176739_1_0001.tif
	DX176739_1_0003.tif
	DX176739_1_0005.tif
	DX176739_1_0007.tif
	DX176739_1_0009.tif
	DX176739_1_0011.tif
	DX176739_1_0013.tif
	DX176739_1_0015.tif
	DX176739_1_0017.tif
	DX176739_1_0019.tif
	DX176739_1_0021.tif
	DX176739_1_0023.tif
	DX176739_1_0025.tif
	DX176739_1_0027.tif
	DX176739_1_0029.tif
	DX176739_1_0031.tif
	DX176739_1_0033.tif
	DX176739_1_0035.tif
	DX176739_1_0037.tif
	DX176739_1_0039.tif
	DX176739_1_0041.tif
	DX176739_1_0043.tif
	DX176739_1_0045.tif
	DX176739_1_0047.tif
	DX176739_1_0049.tif
	DX176739_1_0051.tif
	DX176739_1_0053.tif
	DX176739_1_0055.tif
	DX176739_1_0057.tif
	DX176739_1_0059.tif
	DX176739_1_0061.tif
	DX176739_1_0063.tif
	DX176739_1_0065.tif
	DX176739_1_0067.tif
	DX176739_1_0069.tif
	DX176739_1_0071.tif
	DX176739_1_0073.tif
	DX176739_1_0075.tif
	DX176739_1_0077.tif
	DX176739_1_0079.tif
	DX176739_1_0081.tif
	DX176739_1_0083.tif
	DX176739_1_0085.tif
	DX176739_1_0087.tif
	DX176739_1_0089.tif
	DX176739_1_0091.tif
	DX176739_1_0093.tif
	DX176739_1_0095.tif
	DX176739_1_0097.tif
	DX176739_1_0099.tif
	DX176739_1_0101.tif
	DX176739_1_0103.tif
	DX176739_1_0105.tif
	DX176739_1_0107.tif
	DX176739_1_0109.tif
	DX176739_1_0111.tif
	DX176739_1_0113.tif
	DX176739_1_0115.tif
	DX176739_1_0117.tif
	DX176739_1_0119.tif
	DX176739_1_0121.tif
	DX176739_1_0123.tif
	DX176739_1_0125.tif
	DX176739_1_0127.tif
	DX176739_1_0129.tif
	DX176739_1_0131.tif
	DX176739_1_0133.tif
	DX176739_1_0135.tif
	DX176739_1_0137.tif
	DX176739_1_0139.tif
	DX176739_1_0141.tif
	DX176739_1_0143.tif
	DX176739_1_0145.tif
	DX176739_1_0147.tif
	DX176739_1_0149.tif
	DX176739_1_0151.tif
	DX176739_1_0153.tif
	DX176739_1_0155.tif
	DX176739_1_0157.tif
	DX176739_1_0159.tif
	DX176739_1_0161.tif
	DX176739_1_0163.tif
	DX176739_1_0165.tif
	DX176739_1_0167.tif
	DX176739_1_0169.tif
	DX176739_1_0171.tif
	DX176739_1_0173.tif
	DX176739_1_0175.tif
	DX176739_1_0177.tif
	DX176739_1_0179.tif
	DX176739_1_0181.tif
	DX176739_1_0183.tif
	DX176739_1_0185.tif
	DX176739_1_0187.tif
	DX176739_1_0189.tif
	DX176739_1_0191.tif
	DX176739_1_0193.tif
	DX176739_1_0195.tif
	DX176739_1_0197.tif
	DX176739_1_0199.tif
	DX176739_1_0201.tif
	DX176739_1_0203.tif
	DX176739_1_0205.tif
	DX176739_1_0207.tif
	DX176739_1_0209.tif
	DX176739_1_0211.tif
	DX176739_1_0213.tif
	DX176739_1_0215.tif
	DX176739_1_0217.tif
	DX176739_1_0219.tif
	DX176739_1_0221.tif
	DX176739_1_0223.tif
	DX176739_1_0225.tif
	DX176739_1_0227.tif
	DX176739_1_0229.tif
	DX176739_1_0231.tif
	DX176739_1_0233.tif
	DX176739_1_0235.tif
	DX176739_1_0237.tif
	DX176739_1_0239.tif
	DX176739_1_0241.tif
	DX176739_1_0243.tif
	DX176739_1_0245.tif
	DX176739_1_0247.tif
	DX176739_1_0249.tif
	DX176739_1_0251.tif
	DX176739_1_0253.tif
	DX176739_1_0255.tif
	DX176739_1_0257.tif
	DX176739_1_0259.tif
	DX176739_1_0261.tif
	DX176739_1_0263.tif
	DX176739_1_0265.tif
	DX176739_1_0267.tif
	DX176739_1_0269.tif
	DX176739_1_0271.tif
	DX176739_1_0273.tif
	DX176739_1_0275.tif
	DX176739_1_0277.tif
	DX176739_1_0279.tif
	DX176739_1_0281.tif
	DX176739_1_0283.tif
	DX176739_1_0285.tif
	DX176739_1_0287.tif
	DX176739_1_0289.tif
	DX176739_1_0291.tif
	DX176739_1_0293.tif
	DX176739_1_0295.tif
	DX176739_1_0297.tif
	DX176739_1_0299.tif
	DX176739_1_0301.tif
	DX176739_1_0303.tif

